Imaging and Hemodynamic Characteristics of Vulnerable Carotid Plaques and Artificial Intelligence Applications in Plaque Classification and Segmentation

被引:12
|
作者
Han, Na [1 ,2 ,3 ]
Ma, Yurong [1 ,2 ]
Li, Yan [4 ]
Zheng, Yu [1 ,2 ,3 ]
Wu, Chuang [1 ,2 ]
Gan, Tiejun [1 ,2 ]
Li, Min [1 ,2 ]
Ma, Laiyang [1 ,2 ,3 ]
Zhang, Jing [1 ,2 ]
机构
[1] Lanzhou Univ, Dept Magnet Resonance, Hosp 2, Lanzhou 730030, Peoples R China
[2] Gansu Prov Clin Res Ctr Funct & Mol Imaging, Lanzhou 730030, Peoples R China
[3] Lanzhou Univ, Clin Sch 2, Lanzhou 730030, Peoples R China
[4] Lanzhou Univ, Sch Math & Stat, Lanzhou 730030, Peoples R China
基金
中国国家自然科学基金;
关键词
vulnerable plaque; VW-HRMRI; 4D flow; artificial intelligence; stroke; WALL SHEAR-STRESS; EXPERT CONSENSUS RECOMMENDATIONS; ARTERY WALL; ATHEROSCLEROTIC PLAQUE; INTRAPLAQUE HEMORRHAGE; PROGRESSION; ULCERATION; STENOSIS; STROKE; MRI;
D O I
10.3390/brainsci13010143
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Stroke is a massive public health problem. The rupture of vulnerable carotid atherosclerotic plaques is the most common cause of acute ischemic stroke (AIS) across the world. Currently, vessel wall high-resolution magnetic resonance imaging (VW-HRMRI) is the most appropriate and cost-effective imaging technique to characterize carotid plaque vulnerability and plays an important role in promoting early diagnosis and guiding aggressive clinical therapy to reduce the risk of plaque rupture and AIS. In recent years, great progress has been made in imaging research on vulnerable carotid plaques. This review summarizes developments in the imaging and hemodynamic characteristics of vulnerable carotid plaques on the basis of VW-HRMRI and four-dimensional (4D) flow MRI, and it discusses the relationship between these characteristics and ischemic stroke. In addition, the applications of artificial intelligence in plaque classification and segmentation are reviewed.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm
    Jain, Pankaj K.
    Dubey, Abhishek
    Saba, Luca
    Khanna, Narender N.
    Laird, John R.
    Nicolaides, Andrew
    Fouda, Mostafa M.
    Suri, Jasjit S.
    Sharma, Neeraj
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2022, 9 (10)
  • [32] Carotid Plaque Morphological Classification Compared With Biomechanical Cap Stress Implications for a Magnetic Resonance Imaging-Based Assessment
    Gijsen, Frank J. H.
    Nieuwstadt, Harm A.
    Wentzel, Jolanda J.
    Verhagen, Hence J. M.
    van der Lugt, Aad
    van der Steen, Antonius F. W.
    STROKE, 2015, 46 (08) : 2124 - 2128
  • [33] Imaging Features of Vulnerable Carotid Atherosclerotic Plaque and the Associated Clinical Implications
    Vranic, Justin E.
    Romero, Javier M.
    Hatsukami, Thomas S.
    Sun, Jie
    Mossa-Basha, Mahmud
    CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2020, 22 (08)
  • [34] Head-to-Head Comparison of Inflammation and Neovascularization in Human Carotid Plaques: Implications for the Imaging of Vulnerable Plaques
    Demeure, Fabian
    Bouzin, Caroline
    Roelants, Veronique
    Bol, Anne
    Verhelst, Robert
    Astarci, Parla
    Gerber, Bernhard L.
    Pouleur, Anne-Catherine
    Pasquet, Agnes
    de Meester, Christophe
    Vanoverschelde, Jean-Louis J.
    Vancraeynest, David
    CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (05)
  • [35] Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192
    Rotzinger, David C.
    Qanadli, Salah D.
    Fahrni, Guillaume
    BIOMOLECULES, 2023, 13 (02)
  • [36] A review of Artificial Intelligence methods in bladder cancer: segmentation, classification, and detection
    Bashkami, Ayah
    Nasayreh, Ahmad
    Makhadmeh, Sharif Naser
    Gharaibeh, Hasan
    Alzahrani, Ahmed Ibrahim
    Alwadain, Ayed
    Heming, Jia
    Ezugwu, Absalom E.
    Abualigah, Laith
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (12)
  • [37] Spontaneous preoperative microembolic signals detected with transcranial Doppler are associated with vulnerable carotid plaque characteristics
    Van Lammeren, G. W.
    Van De Mortel, R. H.
    Visscher, M.
    Pasterkamp, G.
    De Borst, G. J.
    Moll, F. L.
    Vink, A.
    Tromp, S. C.
    De Vries, J. -P. P. M.
    JOURNAL OF CARDIOVASCULAR SURGERY, 2014, 55 (03) : 375 - 380
  • [38] A Review of the Clinical Applications of Artificial Intelligence in Abdominal Imaging
    Mervak, Benjamin M.
    Fried, Jessica G.
    Wasnik, Ashish P.
    DIAGNOSTICS, 2023, 13 (18)
  • [39] Artificial intelligence applications for thoracic imaging
    Chassagnon, Guillaume
    Vakalopoulou, Maria
    Paragios, Nikos
    Revel, Marie-Pierre
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 123
  • [40] Applications of Artificial Intelligence in Breast Imaging
    Morgan, Matthew B.
    Mates, Jonathan L.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (01) : 139 - 148