Faster algorithms for k-subset sum and variations

被引:3
作者
Antonopoulos, Antonis [1 ]
Pagourtzis, Aris [1 ]
Petsalakis, Stavros [1 ]
Vasilakis, Manolis [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens 15780, Greece
关键词
Color coding; FFT; k-Subset Sum; Multiple Knapsack; Multiple Subset Sum; Pseudopolynomial algorithms; Subset Sum;
D O I
10.1007/s10878-022-00928-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present new, faster pseudopolynomial time algorithms for the k-SUBSET SUM problem, defined as follows: given a set Z of n positive integers and k targets t(1), ... , t(k), determine whether there exist k disjoint subsets Z(1), ... , Z(k) subset of Z, such that E(Z(i)) = t(i), for i = 1, ... , k. Assuming t = max{t(1), ... , t(k)} is the maximum among the given targets, a standard dynamic programming approach based on Bellman's algorithm can solve the problem in O(nt(k)) time. We build upon recent advances on SUBSET SUM due to Koiliaris and Xu, as well as Bringmann, in order to provide faster algorithms for k-SUBSET SUM. We devise two algorithms: a deterministic one of time complexity (SIC)(n(k/(k+1))t(k)) and a randomised one of (SIC)(n + t(k)) complexity. Additionally, we show how these algorithms can be modified in order to incorporate cardinality constraints enforced on the solution subsets. We further demonstrate how these algorithms can be used in order to cope with variations of k-SUBSET SUM, namely SUBSET SUM RATIO, k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM.
引用
收藏
页数:21
相关论文
共 33 条
  • [1] Approximating Subset Sum Ratio via Subset Sum Computations
    Alonistiotis, Giannis
    Antonopoulos, Antonis
    Melissinos, Nikolaos
    Pagourtzis, Aris
    Petsalakis, Stavros
    Vasilakis, Manolis
    [J]. COMBINATORIAL ALGORITHMS (IWOCA 2022), 2022, 13270 : 73 - 85
  • [2] [Anonymous], 2009, Introduction to Algorithms
  • [3] Faster Algorithms for k-SUBSET SUM and Variations
    Antonopoulos, Antonis
    Pagourtzis, Aris
    Petsalakis, Stavros
    Vasilakis, Manolis
    [J]. FRONTIERS OF ALGORITHMICS, IJTCS-FAW 2021, 2022, 12874 : 37 - 52
  • [4] Finding Witnesses by Peeling
    Aumann, Yonatan
    Lewenstein, Moshe
    Lewenstein, Noa
    Tsur, Dekel
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (02)
  • [5] Efficient approximation algorithms for the SUBSET-SUMS equality problem
    Bazgan, C
    Santha, M
    Tuza, Z
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 64 (02) : 160 - 170
  • [6] DYNAMIC PROGRAMMING
    BELLMAN, R
    [J]. SCIENCE, 1966, 153 (3731) : 34 - &
  • [7] Top-k-Convolution and the Quest for Near-Linear Output-Sensitive Subset Sum
    Bringmann, Karl
    Nakos, Vasileios
    [J]. PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 982 - 995
  • [8] Bringmann K, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1073
  • [9] A PTAS for the Multiple Subset Sum Problem with different knapsack capacities
    Caprara, A
    Kellerer, H
    Pferschy, U
    [J]. INFORMATION PROCESSING LETTERS, 2000, 73 (3-4) : 111 - 118
  • [10] A 3/4-approximation algorithm for multiple subset sum
    Caprara, A
    Kellerer, H
    Pferschy, U
    [J]. JOURNAL OF HEURISTICS, 2003, 9 (02) : 99 - 111