Effect of Elevated CO2 and Drought on Biomass, Gas Exchange and Wood Structure of Eucalyptus grandis

被引:1
|
作者
Costa, Layssa da Silva [1 ]
Vuralhan-Eckert, Jasmin [1 ]
Fromm, Joerg [1 ]
机构
[1] Univ Hamburg, Inst Wood Biol, Leuschnerstr 91d, D-21031 Hamburg, Germany
来源
PLANTS-BASEL | 2023年 / 12卷 / 01期
关键词
climate change; drought stress; elevated carbon dioxide; gas exchange; vessel formation; hydraulic architecture; Eucalyptus; WATER-USE EFFICIENCY; GENE-EXPRESSION; GROWTH; PHOTOSYNTHESIS; RESPONSES; STRESS; NITROGEN; SIZE;
D O I
10.3390/plants12010148
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Juvenile Eucalyptus grandis were exposed to drought and elevated CO2 to evaluate the independent and interactive effects on growth, gas exchange and wood structure. Trees were grown in a greenhouse at ambient and elevated CO2 (aCO(2), 410 ppm; eCO(2), 950 ppm), in combination with daily irrigation and cyclic drought during one growing season. The results demonstrated that drought stress limited intercellular CO2 concentration, photosynthesis, stomatal conductance, and transpiration, which correlated with a lower increment in height, stem diameter and biomass. Drought also induced formation of frequent and narrow vessels accompanied by a reduction in vessel lumen area. Conversely, elevated CO2 increased intercellular CO2 concentration as well as photosynthesis, and partially closed stomata, leading to a more efficient water use, especially under drought. There was a clear trend towards greater biomass accumulation at eCO(2), although the results did not show statistical significance for this parameter. We observed an increase in vessel diameter and vessel lumen area at eCO(2), and, contrarily, the vessel frequency decreased. Thus, we conclude that eCO(2) delayed the effects of drought and potentialized growth. However, results on vessel anatomy suggest that increasing vulnerability to cavitation due to formation of larger vessels may counteract the beneficial effects of eCO(2) under severe drought.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] INTERACTIONS BETWEEN DROUGHT AND ELEVATED CO2 ON GROWTH AND GAS-EXCHANGE OF SEEDLINGS OF 3 DECIDUOUS TREE SPECIES
    TSCHAPLINSKI, TJ
    STEWART, DB
    HANSON, PJ
    NORBY, RJ
    NEW PHYTOLOGIST, 1995, 129 (01) : 63 - 71
  • [22] Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO2
    Rakocevic, Miroslava
    Batista, Eunice R.
    Pazianotto, Ricardo A. A.
    Scholz, Maria B. S.
    Souza, Guilherme A. R.
    Campostrini, Eliemar
    Ramalho, Jose C.
    FUNCTIONAL PLANT BIOLOGY, 2021, 48 (05) : 469 - 482
  • [23] Changes in leaf gas exchange and biomass of Eucalyptus camaldulensis in response to increasing drought stress induced by polyethylene glycol
    Utkhao, Winai
    Yingjajaval, Suntaree
    TREES-STRUCTURE AND FUNCTION, 2015, 29 (05): : 1581 - 1592
  • [24] Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize
    Zong, Y. Z.
    Wang, W. F.
    Xue, Q. W.
    Shangguan, Z. P.
    PHOTOSYNTHETICA, 2014, 52 (01) : 63 - 70
  • [25] Growth and Leaf Gas Exchange Upregulation by Elevated [CO2] Is Light Dependent in Coffee Plants
    de Souza, Antonio H.
    de Oliveira, Ueliton S.
    Oliveira, Leonardo A.
    de Carvalho, Pablo H. N.
    de Andrade, Moab T.
    Pereira, Talitha S.
    Gomes, Carlos C.
    Cardoso, Amanda A.
    Ramalho, Jose D. C.
    Martins, Samuel C. V.
    DaMatta, Fabio M.
    PLANTS-BASEL, 2023, 12 (07):
  • [26] Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna
    Zeppel, Melanie J. B.
    Lewis, James D.
    Medlyn, Belinda
    Barton, Craig V. M.
    Duursma, Remko A.
    Eamus, Derek
    Adams, Mark A.
    Phillips, Nathan
    Ellsworth, David S.
    Forster, Michael A.
    Tissue, David T.
    TREE PHYSIOLOGY, 2011, 31 (09) : 932 - 944
  • [27] Effect of the transgenerational exposure to elevated CO2 on the drought response of winter wheat: Stomatal control and water use efficiency
    Li, Yafei
    Li, Xiangnan
    Yu, Jingjie
    Liu, Fulai
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2017, 136 : 78 - 84
  • [28] Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings
    Duan, Honglang
    Duursma, Remko A.
    Huang, Guomin
    Smith, Renee A.
    Choat, Brendan
    O'Grady, Anthony P.
    Tissue, David T.
    PLANT CELL AND ENVIRONMENT, 2014, 37 (07) : 1598 - 1613
  • [29] The effect of individual and combined drought and heat stress under elevated CO2 on physiological responses in spring wheat genotypes
    Abdelhakim, Lamis Osama Anwar
    Palma, Carolina Falcato Fialho
    Zhou, Rong
    Wollenweber, Bernd
    Ottosen, Carl-Otto
    Rosenqvist, Eva
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 162 : 301 - 314
  • [30] Combined effect of elevated CO2 concentration and drought on the photosynthetic apparatus and leaf morphology traits in seedlings of yellow poplar
    Je, Sun-Mi
    Woo, Su Young
    Lee, Seong Han
    Kwak, Myung Ja
    Lee, Tae Yoon
    Kim, Sun Hee
    ECOLOGICAL RESEARCH, 2018, 33 (02) : 403 - 412