Semi-Woven Structures via Dual Nozzle Melt Electrowriting

被引:7
作者
Diaz, Raquel Sanchez [1 ]
De-Juan-Pardo, Elena M. [2 ,3 ,4 ]
Dalton, Paul D. [5 ]
Dargaville, Tim R. [1 ]
机构
[1] Queensland Univ Technol, Fac Sci, Ctr Mat Sci, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[2] Univ Western Australia, Harry Perkins Inst Med Res, T3mPLATE, QEII Med Ctr,Nedlands & Ctr Med Res, Perth, WA 6009, Australia
[3] Univ w Australia, Sch Engn, Perth, WA 6009, Australia
[4] Queensland Univ Technol, Sch Mech, Med & Proc Engn, Brisbane, Qld 4000, Australia
[5] Univ Oregon, Phil & Penny Knight Campus Accelerating Sci Impac, 1505 Franklin Blvd, Eugene, OR 97403 USA
关键词
multi-nozzles; polycaprolactone; scaffolds; NANOFIBERS;
D O I
10.1002/mame.202200526
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Melt electrowriting is an additive manufacturing technique utilizing electrohydrodynamic forces to create nano- to micro-scale fibrous polymer objects. It is a useful research tool but has yet to reach commercial scale-up mainly due to the intrinsically slow nature of extruding a single polymer jet. Here the concept of dual nozzle melts electrowriting requiring no new hardware other than the nozzle is introduced. Experimental data using a dual nozzle shows the possibility of doubling throughput including the phenomenon of semi-woven structures with fibers from one nozzle either on top or under the fiber from the other nozzle depending on programmed collector movement. The study highlights the complexity of melt electrowriting when using more than one nozzle, and provides a framework for multi-nozzle, high-throughput melt electrowriting.
引用
收藏
页数:8
相关论文
共 26 条
[1]  
Bas O., 2021, MULTIFUNCT MAT, V4
[2]   Melt electrospinning of poly(ε-caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing [J].
Brown, Toby D. ;
Edin, Fredrik ;
Detta, Nicola ;
Skelton, Anthony D. ;
Hutmacher, Dietmar W. ;
Dalton, Paul D. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 45 :698-708
[3]   In vivo evaluation of skin integration with ventricular assist device drivelines [J].
Cavalcanti, Amanda S. ;
Diaz, Raquel Sanchez ;
Bolle, Eleonore C. L. ;
Bartnikowski, Nicole ;
Fraser, John F. ;
McGiffin, David ;
Savi, Flavia Medeiros ;
Shafiee, Abbas ;
Dargaville, Tim R. ;
Gregory, Shaun D. .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2022, 41 (08) :1032-1043
[4]   Polymer melt differential electrospinning from a linear slot spinneret [J].
Chen, Mingjun ;
Zhang, Youchen ;
Chen, Xiaoqing ;
Yang, Weimin ;
Li, Haoyi ;
Yousefzadeh, Maryam ;
Ramakrishna, Seeram .
JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (31)
[5]   Layered 3D Printing by Tethered Pyro-Electrospinning [J].
Coppola, Sara ;
Nasti, Giuseppe ;
Vespini, Veronica ;
Ferraro, Pietro .
ADVANCES IN POLYMER TECHNOLOGY, 2020, 2020
[6]   Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro- and Nanoscale [J].
Coppola, Sara ;
Vespini, Veronica ;
Nasti, Giuseppe ;
Gennari, Oriella ;
Grilli, Simonetta ;
Ventre, Maurizio ;
Iannone, Maria ;
Netti, Paolo A. ;
Ferraro, Pietro .
CHEMISTRY OF MATERIALS, 2014, 26 (11) :3357-3360
[7]   Electrospinning: A fascinating method for the preparation of ultrathin fibres [J].
Greiner, Andreas ;
Wendorff, Joachim H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (30) :5670-5703
[8]   Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation [J].
Gupta, Aditi ;
Ayithapu, Praharshitha ;
Singhal, Richa .
CHEMICAL ENGINEERING SCIENCE, 2021, 235
[9]  
Hacker C.J.P., 2009, P INT C LAT ADV HIGH
[10]  
Hochleitner G., 2016, BioNanoMaterials, V17, P159, DOI [DOI 10.1515/BNM-2015-0022, 10.1515/bnm-2015-0022]