Fabrication of suppository shells via hot-melt extrusion paired with fused deposition modeling 3D printing techniques

被引:5
|
作者
Zhang, Peilun [1 ]
Wang, Honghe [1 ]
Chung, Sooyeon [1 ]
Li, Jinghan [2 ]
Vemula, Sateesh Kumar [1 ]
Repka, Michael A. [1 ,3 ,4 ]
机构
[1] Univ Mississippi, Sch Pharm, Dept Pharmaceut & Drug Delivery, University, MS 38677 USA
[2] Univ Minnesota, Coll Pharm, Dept Pharmaceut, Minneapolis, MN 55455 USA
[3] Univ Mississippi, Pii Ctr Pharmaceut Technol, University, MS 38677 USA
[4] Univ Mississippi, Pii Ctr Pharmaceut Technol, Sch Pharm, University, MS 38677 USA
基金
美国国家科学基金会;
关键词
Fused deposition modeling; 3D printing; Hot melt extrusion; Suppository; Personalized medicine; DRUG-RELEASE; DELIVERY; INSULIN; TABLETS;
D O I
10.1016/j.jddst.2024.105491
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Three-dimensional (3D) printing is a potential technique for developing personalized medicines. Among its applications, mold manufacturing in industrial 3D printing stands out, especially for creating complex structures. This capability has been innovatively extended to drug development. Our study employed fused deposition modeling (FDM) 3D printers to fabricate molds for suppository shells using acetaminophen (APAP), as the model drug, and PVA, PLA, and HPMC HME 15LV as the primary materials. This study was segmented into three stages. Evaluating the influence of suppository shell pore sizes on drug release Distinguishing among different suppository materials Formulating a new type of suppository with a drug-containing shell Our findings demonstrated the ideal pore size (2 mm) for the suppository shell. Furthermore, the release rates varied across the polymers, rank-ordered as PVA > PLA > HPMC HME 15LV. Analyses via powder X-ray diffractometry and differential scanning calorimetry showed that the drug-loaded suppository shells, developed using hot-melt extrusion (HME) and FDM, were amorphous. In contrast, the suppository formulated through fusion revealed some drugs in crystalline state. This study demonstrated the successful and innovative fabrication of suppository shells via HME paired with FDM 3D printing, which can be utilized for personalized medicine.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Patient-focused programable release indomethacin tablets prepared via conjugation of hot melt extrusion (HME) and fused depositional modeling (FDM)-3D printing technologies
    Huang, Lianghao
    Yang, Weiwei
    Bu, Yuru
    Yu, Mingchao
    Xu, Minghui
    Guo, Jingjing
    Ni, Wen
    Jia, Yaru
    Zhang, Jiaxiang
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 97
  • [42] Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications
    Salentijn, Gert I. J.
    Oomen, Pieter E.
    Grajewski, Maciej
    Verpoorte, Elisabeth
    ANALYTICAL CHEMISTRY, 2017, 89 (13) : 7053 - 7061
  • [43] Development of controlled release oral dosages by density gradient modification via three-dimensional (3D) printing and hot-melt extrusion (HME) technology
    Hu, Zhiqing
    Xu, Pengchong
    Zhang, Jiaxiang
    Bandari, Suresh
    Repka, Michael A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 71
  • [44] THERMOPLASTICS 3D PRINTING USING FUSED DEPOSITION MODELING ON FABRICS
    Blais, Maxwell
    Tomlinson, Scott
    Khoda, Bashir
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 3, 2021,
  • [45] Sustainable Materials for Fused Deposition Modeling 3D Printing Applications
    Rett, Jennifer P.
    Traore, Yannick L.
    Ho, Emmanuel A.
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (07)
  • [46] Topology Optimization for Multipatch Fused Deposition Modeling 3D Printing
    Yu, Huangchao
    Hong, Huajie
    Cao, Su
    Ahmad, Rafiq
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [47] Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based medium chain triglyceride oleogel
    Kavimughil, M.
    Leena, M. Maria
    Moses, J. A.
    Anandharamakrishnan, C.
    JOURNAL OF FOOD ENGINEERING, 2022, 329
  • [48] Blueberry-Inspired Structurally Colored PLA Granules Induced by Mie Scattering for Hot-Melt Extrusion of 3D Printing Filaments
    Meng, Rou
    Liu, Tianyi
    Wu, Suli
    ACS APPLIED MATERIALS & INTERFACES, 2025,
  • [49] Rheological and printability evaluation of melt-cast explosives for fused deposition modeling (FDM) 3D printing
    Zong, Huzeng
    Ren, Hao
    Ke, Xiang
    Wang, Suwei
    Hao, Gazi
    Hu, Yubing
    Zhang, Guangpu
    Xiao, Lei
    Jiang, Wei
    FIREPHYSCHEM, 2024, 4 (01): : 34 - 41
  • [50] Development of Diclofenac Sodium 3D Printed Cylindrical and Tubular-Shaped Tablets through Hot Melt Extrusion and Fused Deposition Modelling Techniques
    Digkas, Tryfon
    Porfire, Alina
    Van Renterghem, Jeroen
    Samaro, Aseel
    Borodi, Gheorghe
    Vervaet, Chris
    Crisan, Andrea Gabriela
    Iurian, Sonia
    De Beer, Thomas
    Tomuta, Ioan
    PHARMACEUTICALS, 2023, 16 (08)