Fabrication of suppository shells via hot-melt extrusion paired with fused deposition modeling 3D printing techniques

被引:5
|
作者
Zhang, Peilun [1 ]
Wang, Honghe [1 ]
Chung, Sooyeon [1 ]
Li, Jinghan [2 ]
Vemula, Sateesh Kumar [1 ]
Repka, Michael A. [1 ,3 ,4 ]
机构
[1] Univ Mississippi, Sch Pharm, Dept Pharmaceut & Drug Delivery, University, MS 38677 USA
[2] Univ Minnesota, Coll Pharm, Dept Pharmaceut, Minneapolis, MN 55455 USA
[3] Univ Mississippi, Pii Ctr Pharmaceut Technol, University, MS 38677 USA
[4] Univ Mississippi, Pii Ctr Pharmaceut Technol, Sch Pharm, University, MS 38677 USA
基金
美国国家科学基金会;
关键词
Fused deposition modeling; 3D printing; Hot melt extrusion; Suppository; Personalized medicine; DRUG-RELEASE; DELIVERY; INSULIN; TABLETS;
D O I
10.1016/j.jddst.2024.105491
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Three-dimensional (3D) printing is a potential technique for developing personalized medicines. Among its applications, mold manufacturing in industrial 3D printing stands out, especially for creating complex structures. This capability has been innovatively extended to drug development. Our study employed fused deposition modeling (FDM) 3D printers to fabricate molds for suppository shells using acetaminophen (APAP), as the model drug, and PVA, PLA, and HPMC HME 15LV as the primary materials. This study was segmented into three stages. Evaluating the influence of suppository shell pore sizes on drug release Distinguishing among different suppository materials Formulating a new type of suppository with a drug-containing shell Our findings demonstrated the ideal pore size (2 mm) for the suppository shell. Furthermore, the release rates varied across the polymers, rank-ordered as PVA > PLA > HPMC HME 15LV. Analyses via powder X-ray diffractometry and differential scanning calorimetry showed that the drug-loaded suppository shells, developed using hot-melt extrusion (HME) and FDM, were amorphous. In contrast, the suppository formulated through fusion revealed some drugs in crystalline state. This study demonstrated the successful and innovative fabrication of suppository shells via HME paired with FDM 3D printing, which can be utilized for personalized medicine.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing
    Prasad, Elke
    Islam, Muhammad T.
    Goodwin, Daniel J.
    Megarry, Andrew J.
    Halbert, Gavin W.
    Florence, Alastair J.
    Robertson, John
    ADDITIVE MANUFACTURING, 2019, 29
  • [22] Disulfiram 3D printed film produced via hot-melt extrusion techniques as a potential anticervical cancer candidate
    Almotairy, Ahmed
    Alyahya, Mohammed
    Althobaiti, Abdulmajeed
    Almutairi, Mashan
    Bandari, Suresh
    Ashour, Eman A.
    Repka, Michael A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2023, 635
  • [23] Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics
    Pereira, Gabriela G.
    Figueiredo, Sara
    Fernandes, Ana Isabel
    Pinto, Joao F.
    PHARMACEUTICS, 2020, 12 (09) : 1 - 63
  • [24] Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels
    Koltsov, Semyon I.
    Statsenko, Tatiana G.
    Morozova, Sofia M.
    POLYMERS, 2022, 14 (24)
  • [25] Hot-Melt 3D Extrusion for the Fabrication of Customizable Modified-Release Solid Dosage Forms
    Lee, Jaemin
    Song, Chanwoo
    Noh, Inhwan
    Song, Sangbyeong
    Rhee, Yun-Seok
    PHARMACEUTICS, 2020, 12 (08) : 1 - 16
  • [26] Pharmaceutical Applications of Hot-Melt Extrusion: Continuous Manufacturing, Twin-Screw Granulations, and 3D Printing
    Maniruzzaman, Mohammed
    PHARMACEUTICS, 2019, 11 (05):
  • [27] Fabrication of Flexible and Transferable RTDs via Fused Deposition Modelling 3D Printing
    Tan, Deck Khong
    Nokhodchi, Ali
    Munzenrieder, Niko
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (FLEPS), 2021,
  • [28] Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies
    Alshammari, Nouf D.
    Elkanayati, Rasha
    Vemula, Sateesh Kumar
    Al Shawakri, Esraa
    Uttreja, Prateek
    Almutairi, Mashan
    Repka, Michael A.
    AAPS PHARMSCITECH, 2024, 25 (07):
  • [29] Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals
    Deshkar, Sanjeevani
    Rathi, Mrunali
    Zambad, Shital
    Gandhi, Krishnakant
    CURRENT DRUG DELIVERY, 2021, 18 (04) : 387 - 407
  • [30] Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology
    Omari, Sundus
    Ashour, Eman A.
    Elkanayati, Rasha
    Alyahya, Mohammed
    Almutairi, Mashan
    Repka, Michael A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 74