Precision Delivery of Human Bone Marrow-Derived Mesenchymal Stem Cells Into the Pancreas Via Intra-arterial Injection Prevents the Onset of Diabetes

被引:1
|
作者
Primavera, Rosita [1 ]
Regmi, Shobha [1 ]
Yarani, Reza [1 ,2 ]
Levitte, Steven [1 ]
Wang, Jing [1 ]
Ganguly, Abantika [1 ]
Chetty, Shashank [1 ]
Guindani, Michele [3 ]
Ricordi, Camillo [4 ,5 ]
Meyer, Everett [6 ]
Thakor, Avnesh S. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Radiol, Intervent Radiol Innovat Stanford IRIS, Stanford, CA 94305 USA
[2] Steno Diabet Ctr Copenhagen, Dept Clin Res, Translat Type Diabet Res 1, Herlev, Denmark
[3] UCLA, Jonathan & Karin Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA USA
[4] Univ Miami, Miller Sch Med, Diabet Res Inst DRI, Miami, FL USA
[5] Univ Miami, Miller Sch Med, Clin Cell Transplant Program, Miami, FL USA
[6] Stanford Univ, Sch Med, Dept Med, Div Blood & Marrow Transplantat, Stanford, CA USA
关键词
mesenchymal stem cells; diabetes; intra-arterial injection; precision delivery; Akt; BETA-CELLS; STROMAL CELLS; MECHANISMS; THERAPY; HSP90; AKT; PROMOTE; COMPLEX; ROUTE; PDK1;
D O I
10.1093/stcltm/szae020
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Mesenchymal stem cells (MSCs) are a promising therapy to potentially treat diabetes given their potent anti-inflammatory and immune-modulatory properties. While these regenerative cells have shown considerable promise in cell culture, their clinical translation has been challenging. In part, this can be attributed to these cells not reaching the pancreas to exert their regenerative effects following conventional intravenous (IV) injection, with the majority of cells being trapped in the lungs in the pulmonary first-pass effect. In the present study, we will therefore examine whether direct delivery of MSCs to the pancreas via an intra-arterial (IA) injection can improve their therapeutic efficacy. Using a mouse model, in which repetitive low doses of STZ induced a gentle, but progressive, hyperglycemia, we tested bone marrow-derived MSCs (BM-MSCs) which we have shown are enriched with pro-angiogenic and immunomodulatory factors. In cell culture studies, BM-MSCs were shown to preserve islet viability and function following exposure to proinflammatory cytokines (IFN-gamma, IL-1 beta, and TNF-alpha) through an increase in pAkt. When tested in our animal model, mice receiving IV BM-MSCs were not able to mitigate the effects of STZ, however those which received the same dose and batch of cells via IA injection were able to maintain basal and dynamic glycemic control, to similar levels as seen in healthy control animals, over 10 days. This study shows the importance of considering precision delivery approaches to ensure cell-based therapies reach their intended targets to enable them to exert their therapeutic effects.
引用
收藏
页码:559 / 571
页数:13
相关论文
共 50 条
  • [21] Uremic toxins impair human bone marrow-derived mesenchymal stem cells functionality in vitro
    Idziak, Marta
    Pedzisz, Piotr
    Burdzinska, Anna
    Gala, Kamila
    Paczek, Leszek
    EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY, 2014, 66 (04) : 187 - 194
  • [22] PREDICTION OF IN VIVO BONE FORMING POTENCY OF BONE MARROW-DERIVED HUMAN MESENCHYMAL STEM CELLS
    Janicki, Patricia
    Boeuf, Stephane
    Steck, Eric
    Egermann, Marcus
    Kasten, Philip
    Richter, Wiltrud
    EUROPEAN CELLS & MATERIALS, 2011, 21 : 488 - 507
  • [23] Species variation in the spontaneous calcification of bone marrow-derived mesenchymal stem cells
    Huang, Yi-Zhou
    Cai, Jia-Qin
    Lv, Feng-Juan
    Xie, Hong-Lei
    Yang, Zhi-Ming
    Huang, Yong-Can
    Deng, Li
    CYTOTHERAPY, 2013, 15 (03) : 323 - 329
  • [24] Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis
    Emily Claire Doyle
    Nicholas Martin Wragg
    Samantha Louise Wilson
    Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28 : 3827 - 3842
  • [25] The Fate and Distribution of Autologous Bone Marrow Mesenchymal Stem Cells with Intra-Arterial Infusion in Osteonecrosis of the Femoral Head in Dogs
    Jin, Hongting
    Xu, Taotao
    Chen, Qiqing
    Wu, Chengliang
    Wang, Pinger
    Mao, Qiang
    Zhang, Shanxing
    Shen, Jiayi
    Tong, Peijian
    STEM CELLS INTERNATIONAL, 2016, 2016
  • [26] Comparative characteristic study from bone marrow-derived mesenchymal stem cells
    Purwaningrum, Medania
    Jamilah, Nabila Syarifah
    Purbantoro, Steven Dwi
    Sawangmake, Chenphop
    Nantavisai, Sirirat
    JOURNAL OF VETERINARY SCIENCE, 2021, 22 (06)
  • [27] Caffeine alters the effects of bone marrow-derived mesenchymal stem cells on neutrophils
    Abbasi, Ardeshir
    Froushani, Seyyed Meysam Abtahi
    Delirezh, Norouz
    Mostafaei, Ali
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 27 (04): : 463 - 468
  • [28] Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis
    Otsuka-Yamaguchi, Rina
    Kitada, Masaaki
    Kuroda, Yasumasa
    Kushida, Yoshihiro
    Wakao, Shohei
    Dezawa, Mari
    STEM CELL RESEARCH, 2021, 53
  • [29] Molecular and Cellular Characterization of Buffalo Bone Marrow-Derived Mesenchymal Stem Cells
    Gade, N. E.
    Pratheesh, M. D.
    Nath, A.
    Dubey, P. K.
    Amarpal
    Sharma, B.
    Saikumar, G.
    Sharma, G. Taru
    REPRODUCTION IN DOMESTIC ANIMALS, 2013, 48 (03) : 358 - 367
  • [30] Effects of Intraperitoneal Injection of Allogeneic Bone Marrow-derived Mesenchymal Stem Cells on Bronchiolitis Obliterans in Mice Model
    Isik, Sakine
    Uzuner, Nevin
    Karaman, Meral
    Karaman, Ozkan
    Kiray, Muge
    Kozanoglu, Ilknur
    Bagriyanik, Husnu Alper
    Arikan-Ayyildiz, Zeynep
    Yandim, Melis Kartal
    Baran, Yusuf
    IRANIAN JOURNAL OF ALLERGY ASTHMA AND IMMUNOLOGY, 2017, 16 (03) : 205 - 218