A Conservative Finite Element Scheme for the Kirchhoff Equation

被引:0
|
作者
Dautov, R. Z. [1 ]
Ivanova, M. V. [1 ]
机构
[1] Kazan Fed Univ, Kazan 420008, Russia
关键词
Kirchhoff equation; finite element method; Petrov-Galerkin method; implicit scheme; Newton method;
D O I
10.26907/2541-7746.2023.2.115-131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents an implicit two-layer finite element scheme for solving the Kirchhoff equation, a nonlinear nonlocal equation of hyperbolic type with the Dirichlet integral. The discrete scheme was designed considering the solution of the problem and its derivative for the time variable. It ensures total energy conservation at a discrete level. The use of the Newton method was proven to be effective for solving the scheme on the time layer despite the nonlocality of the equation. The test problems with smooth solutions showed that the scheme can define both the solution of the problem and its time derivative with an error of O(h(2) + tau(2)) in the root-mean-square norm, where tau and h are the grid steps in time and space, respectively.
引用
收藏
页码:115 / 131
页数:17
相关论文
共 50 条
  • [1] A Conservative Fully Discrete Finite Element Scheme for the Nonlinear Klein-Gordon Equation
    Dautov, R. Z.
    Salimzyanova, G. R.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2023, 165 (03): : 190 - 207
  • [2] FINITE-ELEMENT SCHEME BASED ON DISCRETE KIRCHHOFF ASSUMPTION
    KIKUCHI, F
    NUMERISCHE MATHEMATIK, 1975, 24 (03) : 211 - 231
  • [3] A new conservative finite difference scheme for the Rosenau equation
    Omrani, Khaled
    Abidi, Faycal
    Achouri, Talha
    Khiari, Noomen
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 35 - 43
  • [4] On an optimal finite element scheme for the advection equation
    Dunca, Argus A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 522 - 528
  • [5] A new conservative finite difference scheme for Boussinesq paradigm equation
    Kolkovska, Natalia
    Dimova, Milena
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (03): : 1159 - 1171
  • [6] A conservative and stable explicit finite difference scheme for the diffusion equation
    Yang, Junxiang
    Lee, Chaeyoung
    Kwak, Soobin
    Choi, Yongho
    Kim, Junseok
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 56
  • [7] A SYMMETRIC NODAL CONSERVATIVE FINITE ELEMENT METHOD FOR THE DARCY EQUATION
    Barrenechea, Gabriel R.
    Franca, Leopoldo P.
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3652 - 3677
  • [8] A new expanded mixed finite element method for Kirchhoff type parabolic equation
    Ji, Bingjie
    Zhang, Jiansong
    Yu, Yue
    Yu, Yun
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2405 - 2432
  • [9] A new expanded mixed finite element method for Kirchhoff type parabolic equation
    Bingjie Ji
    Jiansong Zhang
    Yue Yu
    Yun Yu
    Numerical Algorithms, 2023, 92 : 2405 - 2432
  • [10] A conservative weighted finite difference scheme for regularized long wave equation
    Shao, Xinhui
    Xue, Guanyu
    Li, Changjun
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9202 - 9209