Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition

被引:3
|
作者
Gao, Bin [1 ]
Peng, Renfeng [2 ,3 ]
Yuan, Ya-xiang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Tensor completion; Tensor ring decomposition; Riemannian optimization; Preconditioned gradient; RENORMALIZATION-GROUP; OPTIMIZATION; CONVERGENCE;
D O I
10.1007/s10589-024-00559-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose Riemannian preconditioned algorithms for the tensor completion problem via tensor ring decomposition. A new Riemannian metric is developed on the product space of the mode-2 unfolding matrices of the core tensors in tensor ring decomposition. The construction of this metric aims to approximate the Hessian of the cost function by its diagonal blocks, paving the way for various Riemannian optimization methods. Specifically, we propose the Riemannian gradient descent and Riemannian conjugate gradient algorithms. We prove that both algorithms globally converge to a stationary point. In the implementation, we exploit the tensor structure and adopt an economical procedure to avoid large matrix formulation and computation in gradients, which significantly reduces the computational cost. Numerical experiments on various synthetic and real-world datasets-movie ratings, hyperspectral images, and high-dimensional functions-suggest that the proposed algorithms have better or favorably comparable performance to other candidates.
引用
收藏
页码:443 / 468
页数:26
相关论文
共 50 条
  • [1] Riemannian preconditioned algorithms for tensor completion via tensor ring decomposition
    Bin Gao
    Renfeng Peng
    Ya-xiang Yuan
    Computational Optimization and Applications, 2024, 88 : 443 - 468
  • [2] NEW RIEMANNIAN PRECONDITIONED ALGORITHMS FOR TENSOR COMPLETION VIA POLYADIC DECOMPOSITION
    Dong, Shuyu
    Gao, Bin
    Guan, Yu
    Glineur, Franccois
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (02) : 840 - 866
  • [3] Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
    Longhao Yuan
    Chao Li
    Jianting Cao
    Qibin Zhao
    Machine Learning, 2020, 109 : 603 - 622
  • [4] Matrix and tensor completion using tensor ring decomposition with sparse representation
    Asante-Mensah, Maame G.
    Ahmadi-Asl, Salman
    Cichocki, Andrzej
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [5] Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion
    Yuan, Longhao
    Li, Chao
    Cao, Jianting
    Zhao, Qibin
    MACHINE LEARNING, 2020, 109 (03) : 603 - 622
  • [6] Tensor train completion: Local recovery guarantees via Riemannian optimization
    Budzinskiy, Stanislav
    Zamarashkin, Nikolai
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (06)
  • [7] Tensor Completion via the CP Decomposition
    Sanogo, Fatoumata
    Navasca, Carmeliza
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 845 - 849
  • [8] Tensor Completion using Low-Rank Tensor Train Decomposition by Riemannian Optimization
    Wang, Junli
    Zhao, Guangshe
    Wang, Dingheng
    Li, Guoqi
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3380 - 3384
  • [9] Tensor ring decomposition-based model with interpretable gradient factors regularization for tensor completion
    Wu, Peng-Ling
    Zhao, Xi -Le
    Ding, Meng
    Zheng, Yu -Bang
    Cui, Lu-Bin
    Huang, Ting -Zhu
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [10] Provable tensor ring completion
    Huang, Huyan
    Liu, Yipeng
    Liu, Jiani
    Zhu, Ce
    SIGNAL PROCESSING, 2020, 171