Can Silica Nanoparticles Improve Lithium Transport in Polymer Electrolytes?

被引:3
作者
Dalmas, Joel Martin [1 ]
van Roekeghem, Ambroise [1 ]
Mingo, Natalio [1 ]
Mossa, Stefano [2 ]
机构
[1] Univ Grenoble Alpes, CEA, LITEN, F-38054 Grenoble, France
[2] Univ Grenoble Alpes, CEA, IRIG MEM LSim, F-38054 Grenoble, France
关键词
ION-TRANSPORT; SOLID-ELECTROLYTES; COMPOSITE ELECTROLYTES; MOLECULAR-WEIGHT; CONDUCTIVITY; CHALLENGES; BATTERY; TEMPERATURE; MECHANISMS; DIFFUSION;
D O I
10.1021/acs.jpcc.3c08080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The question of whether silica nanoparticles can enhance the ionic conductivity of a polymer electrolyte above its crystallization temperature has remained unclear for the two decades following the first experiments on these systems. We use molecular dynamics simulations to decipher the atomic-scale mechanisms affecting the properties of LiTFSI-poly(ethylene oxide) electrolytes upon the addition of silica nanoparticles. At any ionic concentration, adding nanoparticles significantly decreases the conductivity. Most of this reduction can be simply accounted for by the diffusion equation, resulting from the fact that the space occupied by the nanoparticles is made inactive and unable to sustain ionic diffusion. We identify two distinct regimes, above and below a concentration threshold, corresponding to very different ionic distributions and coordination features of the various species. The lack of conductivity enhancement observed in the simulations supports the conclusions of some recent measurements and disagrees with the earliest experimental reports on hybrid silica/polyethylene-oxide electrolytes.
引用
收藏
页码:2737 / 2747
页数:11
相关论文
共 89 条
[1]   Transport and interfacial properties of composite polymer electrolytes [J].
Appetecchi, GB ;
Croce, F ;
Persi, L ;
Ronci, F ;
Scrosati, B .
ELECTROCHIMICA ACTA, 2000, 45 (8-9) :1481-1490
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[4]   Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing [J].
Boaretto, Nicola ;
Garbayo, Inigo ;
Valiyaveettil-SobhanRaj, Sona ;
Quintela, Amaia ;
Li, Chunmei ;
Casas-Cabanas, Montse ;
Aguesse, Frederic .
JOURNAL OF POWER SOURCES, 2021, 502
[5]   Atomistic Description of Ionic Diffusion in PEO-LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration [J].
Brooks, Daniel J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Kozinsky, Boris ;
Mailoa, Jonathan .
MACROMOLECULES, 2018, 51 (21) :8987-8995
[6]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[7]   COMPOSITE POLYMER ELECTROLYTES [J].
CAPUANO, F ;
CROCE, F ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) :1918-1922
[8]   Mechanical and dynamic properties of resin blend and composite systems: A molecular dynamics study [J].
Chen, Gang ;
Li, Ainong ;
Liu, Hanxing ;
Huang, Shangyu ;
Zhang, Zuoqi ;
Liu, Wei ;
Zha, Chao ;
Li, Bei ;
Wang, Zhengzhi .
COMPOSITE STRUCTURES, 2018, 190 :160-168
[9]   Study of segmental dynamics and ion transport in polymer-ceramic composite electrolytes by quasi-elastic neutron scattering [J].
Chen, X. Chelsea ;
Sacci, Robert L. ;
Osti, Naresh C. ;
Tyagi, Madhusudan ;
Wang, Yangyang ;
Palmer, Max J. ;
Dudney, Nancy J. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (02) :379-385
[10]   Diffusion and migration in polymer electrolytes [J].
Choo, Youngwoo ;
Halat, David M. ;
Villaluenga, Irune ;
Timachova, Ksenia ;
Balsara, Nitash P. .
PROGRESS IN POLYMER SCIENCE, 2020, 103