Efficient degradation of tetracycline hydrochloride by activated peroxymonosulfate with PdO/CuFe2O4/coal-bearing strata kaolinite composite

被引:5
作者
Zhu, Lei [1 ,2 ]
Song, Wei [1 ,2 ]
Liu, Chengyong [1 ]
Gu, Wenzhe [1 ]
Zhao, Mengye [1 ]
Zhao, Yunpu [3 ]
机构
[1] China Coal Energy Res Inst Co Ltd, 66 Yanta North Rd, Xian 710054, Peoples R China
[2] China Coal Xian Design Engn Co Ltd, 66 Yanta North Rd, Xian 710000, Peoples R China
[3] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Coal-bearing strata kaolinite; PdO; Peroxymonosulfate; Tetracycline hydrochloride; CuFe2O4; MOLECULAR-STRUCTURE; NANOMATERIALS;
D O I
10.1016/j.jpcs.2024.111884
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, a 4%PdO/CuFe2O4/coal-bearing strata kaolinite (4%PdO/CFO/CK) composite was successfully prepared using a simple hydrothermal method and used as a catalyst for tetracycline hydrochloride (TCH) degradation in wastewater by activating peroxymonosulfate (PMS) in visible light. The synthesized catalyst was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analysis. The effects of different catalyst and PMS dosages, pH of the initial solution, and other key parameters on TCH removal were studied. The results showed that the TCH removal rate using the 4%PdO/CFO/CK + PMS + Vis system was as high as 91.96 % within 20 min at a pH of 4.0, catalyst dosage of 20 mg, and PMS dosage of 1.5 mL. In addition, the TCH removal rate remained >85 % after three cycles, thereby verifying the stability and reusability of the 4%PdO/CFO/CK composite. Finally, free radical capture experiments and electron paramagnetic resonance identified the reactive oxygen species involved in the degradation process as O-1(2), center dot O-2(-), h(+), center dot OH, and SO4 center dot- , and we proposed a mechanism for TCH removal using the 4%PdO/CFO/CK + PMS + Vis system. Our findings provide a promising solution for removing TCH from wastewater using the 4%PdO/CFO/CK + PMS + Vis system.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Heterogeneous catalytic degradation of organic pollutants by peroxymonosulfate activated with nitrogen doped graphene oxide loaded CuFe2O4
    Li, Zhuoqian
    Ma, Shuanglong
    Xu, Shengjun
    Fu, Haichao
    Li, Yi
    Zhao, Peng
    Meng, Qingxiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 577 : 202 - 212
  • [22] Heterogeneous catalytic degradation of phenol by CuFe2O4/Bi12O15Cl6 photocatalyst activated peroxymonosulfate
    Jia, Xinyu
    Zhang, Jinhui
    Huang, Qinglin
    Xiong, Chunyu
    Ji, Haixia
    Ren, Qifang
    Huang, Jing
    Chen, Shaohua
    Jin, Zhen
    Chen, Jing
    Guo, Wanmi
    Ge, Yao
    Ding, Yi
    MATERIALS RESEARCH BULLETIN, 2023, 167
  • [23] Catalytic potential of CuFe2O4/GO for activation of peroxymonosulfate in metronidazole degradation: study of mechanisms
    Roghayeh Noroozi
    Mitra Gholami
    Mahdi Farzadkia
    Ahmad Jonidi Jafari
    Journal of Environmental Health Science and Engineering, 2020, 18 : 947 - 960
  • [24] Catalytic potential of CuFe2O4/GO for activation of peroxymonosulfate in metronidazole degradation: study of mechanisms
    Noroozi, Roghayeh
    Gholami, Mitra
    Farzadkia, Mahdi
    Jonidi Jafari, Ahmad
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2020, 18 (02) : 947 - 960
  • [25] Heterostructure CoFe2O4/kaolinite composite for efficient degradation of tetracycline hydrochloride through synergetic photo-Fenton reaction
    Li, Jingmai
    Li, Shangying
    Cao, Zhou
    Zhao, Yunpu
    Wang, Qizhao
    Cheng, Hongfei
    APPLIED CLAY SCIENCE, 2023, 244
  • [26] Catalytic Degradation of Ciprofloxacin in Aqueous Solution by Peroxymonosulfate Activated with a Magnetic CuFe2O4@Biochar Composite
    Zeng, Youmei
    Zhou, Guangming
    He, Dandan
    Peng, Guilong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [27] Oxidative degradation of tetracycline hydrochloride by Mn2O3/Bi2O3 photocatalysis activated peroxymonosulfate
    Chen, Lijun
    Li, Yinghua
    Zhang, Jingwen
    Li, Mengxi
    Yin, Wenyue
    Chen, Xi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 140
  • [28] Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate
    Ding, Yaobin
    Zhu, Lihua
    Wang, Nan
    Tang, Heqing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 129 : 153 - 162
  • [29] Oxygen-vacancies rich CuFe2O4 catalyst as efficient peroxymonosulfate activator for enhanced oxytetracycline degradation: Performance and mechanism
    Deng, Tian
    He, Haonan
    Zeng, Li
    Wang, Hongbin
    Zou, Qinghua
    Gong, Xiaobo
    Sun, Mingchao
    Liu, Yong
    Zhao, Junfeng
    CHEMICAL ENGINEERING SCIENCE, 2024, 291
  • [30] The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process
    Xu, Yin
    Ai, Jia
    Zhang, Hui
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 309 : 87 - 96