A Novel Harris-Hawk-Optimization-Based Maximum-Power-Point-Tracking Control Strategy for a Grid-Connected PV Power-Generation System

被引:3
作者
Tao, Xiang [1 ]
Xin, Jianbo [1 ]
Zhang, Shuai [2 ]
Xu, Zaide [1 ]
Ye, Zhonghai [3 ]
Wang, Kai [3 ]
Chen, Bo [1 ]
Zhou, Ning [1 ]
机构
[1] State Grid Jiangxi Elect Power Res Inst, Nanchang 330096, Peoples R China
[2] Shangdong Univ, Sch Control Sci & Engn, Jinan 250100, Peoples R China
[3] State Grid Jiangxi Elect Power Co Ltd, Nanchang 330096, Peoples R China
关键词
PV power-generation system; MPPT; Harris Hawk Optimization; grid-connected control strategy;
D O I
10.3390/en17010076
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper aims to assess the efficacy of the Harris Hawk Optimization (HHO) algorithm within the domain of photovoltaic (PV) power-generation systems. The focus lies in elucidating how the HHO algorithm optimizes maximum-power-point tracking (MPPT) and augments the performance of grid-connected PV systems. Initially, in the MATLAB/Simulink environment, a comparison is made between the HHO algorithm and two other extensively utilized methods for maximum-power-point tracking (MPPT): Perturb and Observe (P&O) and Particle Swarm Optimization (PSO). Preliminary findings indicate the HHO algorithm's notable advantages in efficiency and speed over the other algorithms. Furthermore, by establishing a practical experimental platform and synchronously verifying outcomes through simulation, we conducted a comprehensive assessment of the HHO algorithm on a single-phase full-bridge-inverter grid-connected system. Results show the HHO algorithm's exceptional optimization capabilities, which displays superior adaptability and ability to adjust to varying external conditions.
引用
收藏
页数:16
相关论文
共 20 条
[1]   A skipping adaptive P&O MPPT for fast and efficient tracking under partial shading in PV arrays [J].
Ahmed, Jubaer ;
Salam, Zainal ;
Kermadi, Mostefa ;
Afrouzi, Hadi N. ;
Ashique, Ratil H. .
INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (09)
[2]   Fast Artificial Neural Network Based Method for Estimation of the Global Maximum Power Point in Photovoltaic Systems [J].
Allahabadi, Sara ;
Iman-Eini, Hossein ;
Farhangi, Shahrokh .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (06) :5879-5888
[3]   Implementation of adjustable variable step based backstepping control for the PV power plant [J].
Charaabi, Asma ;
Zaidi, Abdelaziz ;
Barambones, Oscar ;
Zanzouri, Nadia .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 136
[4]   Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method [J].
Dileep, G. ;
Singh, S. N. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 :109-129
[5]   An Improved Gray Wolf Optimizer MPPT Algorithm for PV System With BFBIC Converter Under Partial Shading [J].
Guo, Ke ;
Cui, Lichuang ;
Mao, Mingxuan ;
Zhou, Lin ;
Zhang, Qianjin .
IEEE ACCESS, 2020, 8 :103476-103490
[6]   Harris hawks optimization: Algorithm and applications [J].
Heidari, Ali Asghar ;
Mirjalili, Seyedali ;
Faris, Hossam ;
Aljarah, Ibrahim ;
Mafarja, Majdi ;
Chen, Huiling .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 97 :849-872
[7]  
Immad S., 2020, IEEE Trans. Ind. Electron, V68, P7093
[8]   A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition [J].
Ishaque, Kashif ;
Salam, Zainal .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (08) :3195-3206
[9]   A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization [J].
Lian, K. L. ;
Jhang, J. H. ;
Tian, I. S. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (02) :626-633
[10]   Self-Tuning MPPT Scheme Based on Reinforcement Learning and Beta Parameter in Photovoltaic Power Systems [J].
Lin, Dingyi ;
Li, Xingshuo ;
Ding, Shuye ;
Wen, Huiqing ;
Du, Yang ;
Xiao, Weidong .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (12) :13826-13838