Machine learning and multi-omics data in chronic lymphocytic leukemia: the future of precision medicine?

被引:6
作者
Tsagiopoulou, Maria [1 ]
Gut, Ivo G. [1 ,2 ]
机构
[1] Ctr Nacl Anal Genom CNAG, Barcelona, Spain
[2] Univ Barcelona UB, Barcelona, Spain
关键词
machine Learning; omics; multi-omics analysis; precision medicine; chronic lymphocytic leukemia (CLL); bioinformatics; NGS -next generation sequencing; SUBGROUPS; FORM;
D O I
10.3389/fgene.2023.1304661
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Chronic lymphocytic leukemia is a complex and heterogeneous hematological malignancy. The advance of high-throughput multi-omics technologies has significantly influenced chronic lymphocytic leukemia research and paved the way for precision medicine approaches. In this review, we explore the role of machine learning in the analysis of multi-omics data in this hematological malignancy. We discuss recent literature on different machine learning models applied to single omic studies in chronic lymphocytic leukemia, with a special focus on the potential contributions to precision medicine. Finally, we highlight the recently published machine learning applications in multi-omics data in this area of research as well as their potential and limitations.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Precision Medicine and Melanoma: Multi-Omics Approaches to Monitoring the Immunotherapy Response [J].
Valenti, Fabio ;
Falcone, Italia ;
Ungania, Sara ;
Desiderio, Flora ;
Giacomini, Patrizio ;
Bazzichetto, Chiara ;
Conciatori, Fabiana ;
Gallo, Enzo ;
Cognetti, Francesco ;
Ciliberto, Gennaro ;
Morrone, Aldo ;
Guerrisi, Antonino .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
[32]   Machine learning and integrative multi-omics network analysis for survival prediction in acute myeloid leukemia [J].
Kosvyra Α. ;
Karadimitris Α. ;
Papaioannou Μ. ;
Chouvarda I. .
Computers in Biology and Medicine, 2024, 178
[33]   POCALI: Prediction and Insight on CAncer LncRNAs by Integrating Multi-Omics Data with Machine Learning [J].
Rao, Ziyan ;
Wu, Chenyang ;
Liao, Yunxi ;
Ye, Chuan ;
Huang, Shaodong ;
Zhao, Dongyu .
SMALL METHODS, 2025,
[34]   MACHINE LEARNING APPROACHES FOR INTEGRATIVE MULTI-OMICS DATA ANALYSIS OF CANCER: A SYSTEMATIC REVIEW [J].
Hassan, Asmaa M. ;
Naeem, Safaa M. ;
Eldosoky, Mohamed A. A. ;
Mabrouk, Mai S. .
BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2025,
[35]   Pan-cancer classification of multi-omics data based on machine learning models [J].
Cava, Claudia ;
Sabetian, Soudabeh ;
Salvatore, Christian ;
Castiglioni, Isabella .
NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01)
[36]   Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives [J].
Molla, Getnet ;
Bitew, Molalegne .
BIOMEDICINES, 2024, 12 (12)
[37]   Visual analysis of multi-omics data [J].
Swart, Austin ;
Caspi, Ron ;
Paley, Suzanne ;
Karp, Peter D. .
FRONTIERS IN BIOINFORMATICS, 2024, 4
[38]   Data Integration Challenges for Machine Learning in Precision Medicine [J].
Martinez-Garcia, Mireya ;
Hernandez-Lemus, Enrique .
FRONTIERS IN MEDICINE, 2022, 8
[39]   Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application [J].
Shahrajabian, Mohamad Hesam ;
Sun, Wenli .
CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) :267-281
[40]   Differential diagnosis of systemic lupus erythematosus and Sjogren's syndrome using machine learning and multi-omics data [J].
Martorell-Marugan, Jordi ;
Chierici, Marco ;
Jurman, Giuseppe ;
Alarcon-Riquelme, Marta E. ;
Carmona-Saez, Pedro .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152