Classification of Genus Three Zero-Divisor Graphs

被引:0
作者
Asir, Thangaraj [1 ]
Mano, Karuppiah [2 ]
Alsuraiheed, Turki [3 ]
机构
[1] Pondicherry Univ, Dept Math, Pondicherry 605014, India
[2] Fatima Coll, Dept Math, Madurai 625018, India
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 12期
关键词
local ring; zero-divisor graph; graph embedding; RINGS;
D O I
10.3390/sym15122167
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider the problem of classifying commutative rings according to the genus number of its associating zero-divisor graphs. The zero-divisor graph of R, where R is a commutative ring with nonzero identity, denoted by Gamma(R), is the undirected graph whose vertices are the nonzero zero-divisors of R, and the distinct vertices x and y are adjacent if and only if xy=0. Here, we classify the local rings with genus three zero-divisor graphs.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
Anderson D. F., 2021, Graphs from Rings
[2]  
Anderson DF, 2001, LECT NOTES PURE APPL, V220, P61
[3]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[4]  
[Anonymous], 2003, Int. J. Commut. Rings
[5]   Classification of non-local rings with genus two zero-divisor graphs [J].
Asir, T. ;
Mano, K. .
SOFT COMPUTING, 2020, 24 (01) :237-245
[6]   Classification of rings with crosscap two class of graphs [J].
Asir, T. ;
Mano, K. .
DISCRETE APPLIED MATHEMATICS, 2019, 265 :13-21
[7]  
Atiyah M., 1969, INTRO COMMUTATIVE AL
[8]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[9]   Planar zero-divisor graphs [J].
Belshoff, Richard ;
Chapman, Jeremy .
JOURNAL OF ALGEBRA, 2007, 316 (01) :471-480
[10]   LOCAL RINGS WITH GENUS TWO ZERO DIVISOR GRAPH [J].
Bloomfield, Nathan ;
Wickham, Cameron .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2965-2980