Unravelling CO2 Reduction Reaction Intermediates on High Entropy Alloy Catalysts: An Interpretable Machine Learning Approach To Establish Scaling Relations

被引:8
作者
Roy, Diptendu [1 ]
Mandal, Shyama Charan [1 ,2 ,3 ]
Das, Amitabha [1 ]
Pathak, Biswarup [1 ]
机构
[1] Indian Inst Technol Indore, Dept Chem, Indore 453552, India
[2] Stanford Univ, SUNCAT Ctr Interface Sci & Catalysis, Dept Chem Engn, 443 Via Ortega, Stanford, CA 94305 USA
[3] SUNCAT Ctr Interface Sci & Catalysis, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
关键词
high entropy alloy; interpretability; machine learning; methanol; scaling relation; HYDROGENATION; ADSORPTION; SURFACE; CHEMISORPTION; METHANOL;
D O I
10.1002/chem.202302679
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Establishment of a scaling relation among the reaction intermediates is highly important but very much challenging on complex surfaces, such as surfaces of high entropy alloys (HEAs). Herein, we designed an interpretable machine learning (ML) approach to establish a scaling relation among CO2 reduction reaction (CO2RR) intermediates adsorbed at the same adsorption site. Local Interpretable Model-Agnostic Explanations (LIME), Accumulated Local Effects (ALE), and Permutation Feature Importance (PFI) are used for the global and local interpretation of the utilized black box models. These methods were successfully applied through an iterative way and validated on CuCoNiZnMg and CuCoNiZnSnbased HEAs data. Finally, we successfully predicted adsorption energies of *H2CO (MAE: 0.24 eV) and *H3CO (MAE: 0.23 eV) by using the *HCO training data. Similarly, adsorption energy of *O (MAE: 0.32 eV) is also predicted from *H training data. We believe that our proposed method can shift the paradigm of state-of-the-art ML in catalysis towards better interpretability.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[3]   Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction [J].
Birhanu, Mulatu Kassie ;
Tsai, Meng-Che ;
Kahsay, Amaha Woldu ;
Chen, Chun-Tse ;
Zeleke, Tamene Simachew ;
Ibrahim, Kassa Belay ;
Huang, Chen-Jui ;
Su, Wei-Nien ;
Hwang, Bing-Joe .
ADVANCED MATERIALS INTERFACES, 2018, 5 (24)
[4]   Physical and Chemical Nature of the Scaling Relations between Adsorption Energies of Atoms on Metal Surfaces [J].
Calle-Vallejo, F. ;
Martinez, J. I. ;
Garcia-Lastra, J. M. ;
Rossmeisl, J. ;
Koper, M. T. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (11)
[5]  
Calle-Vallejo F, 2015, NAT CHEM, V7, P403, DOI [10.1038/NCHEM.2226, 10.1038/nchem.2226]
[6]   Machine-Learning-Driven High-Entropy Alloy Catalyst Discovery to Circumvent the Scaling Relation for CO2 Reduction Reaction [J].
Chen, Zhi Wen ;
Gariepy, Zachary ;
Chen, Lixin ;
Yao, Xue ;
Anand, Abu ;
Liu, Szu-Jia ;
Feugmo, Conrard Giresse Tetsassi ;
Tamblyn, Isaac ;
Singh, Chandra Veer .
ACS CATALYSIS, 2022, 12 (24) :14864-14871
[7]   Unraveling Electronic Trends in O* and OH* Surface Adsorption in the MO2 Transition-Metal Oxide Series [J].
Comer, Benjamin M. ;
Li, Jiang ;
Abild-Pedersen, Frank ;
Bajdich, Michal ;
Winther, Kirsten T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (18) :7903-7909
[8]   Circumventing CO2 Reduction Scaling Relations Over the Heteronuclear Diatomic Catalytic Pair [J].
Ding, Jie ;
Li, Fuhua ;
Zhang, Jincheng ;
Zhang, Qiao ;
Liu, Yuhang ;
Wang, Weijue ;
Liu, Wei ;
Wang, Beibei ;
Cai, Jun ;
Su, Xiaozhi ;
Yang, Hong Bin ;
Yang, Xuan ;
Huang, Yanqiang ;
Zhai, Yueming ;
Liu, Bin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (21) :11829-11836
[9]   Interpretable machine learning for knowledge generation in heterogeneous catalysis [J].
Esterhuizen, Jacques A. ;
Goldsmith, Bryan R. ;
Linic, Suljo .
NATURE CATALYSIS, 2022, 5 (03) :175-184
[10]   Theory-Guided Machine Learning Finds Geometric Structure-Property Relationships for Chemisorption on Subsurface Alloys [J].
Esterhuizen, Jacques A. ;
Goldsmith, Bryan R. ;
Linic, Suljo .
CHEM, 2020, 6 (11) :3100-3117