Leveraging Transformer and Graph Neural Networks for Variable Misuse Detection

被引:0
|
作者
Romanov, Vitaly [1 ]
Dlamini, Gcinizwe [1 ]
Valeev, Aidar [1 ]
Ivanov, Vladimir [1 ]
机构
[1] Innopolis Univ, Fac Comp Sci & Engn, Innopolis, Russia
来源
PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, ENASE 2023 | 2023年
基金
俄罗斯科学基金会;
关键词
Graph Neural Network; CodeBERT; Variable Misuse Detection;
D O I
10.5220/0011997300003464
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Understanding source code is a central part of finding and fixing software defects in software development. In many cases software defects caused by an incorrect usage of variables in program code. Over the years researchers have developed data-driven approaches to detect variable misuse. Most of modern existing approaches are based on the transformer architecture, trained on millions of buggy and correct code snippets to learn the task of variable detection. In this paper, we evaluate an alternative, a graph neural network (GNN) architectures, for variable misuse detection. Popular benchmark dataset, which is a collection functions written in Python programming language, is used to train the models presented in this paper. We compare the GNN models with the transformer-based model called CodeBERT.
引用
收藏
页码:727 / 733
页数:7
相关论文
共 50 条
  • [1] Leveraging graph neural networks for point-of-interest recommendations
    Zhang, Jiyong
    Liu, Xin
    Zhou, Xiaofei
    Chu, Xiaowen
    NEUROCOMPUTING, 2021, 462 : 1 - 13
  • [2] Graph Anomaly Detection With Graph Neural Networks: Current Status and Challenges
    Kim, Hwan
    Lee, Byung Suk
    Shin, Won-Yong
    Lim, Sungsu
    IEEE ACCESS, 2022, 10 : 111820 - 111829
  • [3] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01) : 642 - 669
  • [4] Hardware Trojan Detection Using Graph Neural Networks
    Yasaei, Rozhin
    Chen, Luke
    Yu, Shih-Yuan
    Al Faruque, Mohammad Abdullah
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (01) : 25 - 38
  • [5] Hybrid graph transformer networks for multivariate time series anomaly detection
    Rong Gao
    Wei He
    Lingyu Yan
    Donghua Liu
    Yonghong Yu
    Zhiwei Ye
    The Journal of Supercomputing, 2024, 80 : 642 - 669
  • [6] Symbols Detection and Classification using Graph Neural Networks
    Renton, Guillaume
    Balcilar, Muhammet
    Heroux, Pierre
    Gauzere, Benoit
    Honeine, Paul
    Adam, Sebastien
    PATTERN RECOGNITION LETTERS, 2021, 152 : 391 - 397
  • [7] Drug-target Interaction Prediction By Combining Transformer and Graph Neural Networks
    Liu, Junkai
    Lu, Yaoyao
    Guan, Shixuan
    Jiang, Tengsheng
    Ding, Yijie
    Fu, Qiming
    Cui, Zhiming
    Wu, Hongjie
    CURRENT BIOINFORMATICS, 2024, 19 (04) : 316 - 326
  • [8] Anomalous Node Detection in Blockchain Networks Based on Graph Neural Networks
    Chang, Ze
    Cai, Yunfei
    Liu, Xiao Fan
    Xie, Zhenping
    Liu, Yuan
    Zhan, Qianyi
    SENSORS, 2025, 25 (01)
  • [9] One-class graph neural networks for anomaly detection in attributed networks
    Wang, Xuhong
    Jin, Baihong
    Du, Ying
    Cui, Ping
    Tan, Yingshui
    Yang, Yupu
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18) : 12073 - 12085
  • [10] ParGCN: Abnormal Transaction Detection based on Graph Neural Networks
    Yu, Lian
    Jing, Qi
    Li, Ruomiao
    Cheng, Zhiya
    Xu, Chang
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2022, : 797 - 808