Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation

被引:1
|
作者
Guo, Ya-Hui [1 ]
Zuo, Da-Wei [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 04期
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; breather; rogue wave; MECHANISMS; SYSTEM;
D O I
10.1007/s12043-023-02674-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the modified Darboux transformation, a new first-order solution of coupled fourth-order nonlinear Schrodinger equation (cNLS) is constructed. The amplitude of rogue wave, distance of the breather and the rogue wave can be changed if we adjust parameter d(1). With the adjustment of the parameter c(2), the breather and the rogue wave can be converted into each other, and the direction of propagation of the breather can be changed. When the initial wave height takes different values, images of the breather and the rogue wave as well as soliton-like and rogue waves can be presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Controllable rogue waves in coupled nonlinear Schrodinger equations with varying potentials and nonlinearities
    Cheng, Xueping
    Wang, Jianyong
    Li, Jinyu
    NONLINEAR DYNAMICS, 2014, 77 (03) : 545 - 552
  • [42] Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrodinger equation applicable to pulse propagation in isotropic media
    Wang, Haotian
    Li, Xin
    Zhou, Qin
    Liu, Wenjun
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [43] The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrodinger Equations
    Chiu, Tin Lok
    Liu, Tian Yang
    Chan, Hiu Ning
    Chow, Kwok Wing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (03) : 290 - 294
  • [44] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [45] General rogue wave solution to the discrete nonlinear Schrodinger equation
    Ohta, Yasuhiro
    Feng, Bao-Feng
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439
  • [46] Rogue waves based on the coupled nonlinear Schrodinger option pricing model with external potential
    Liu, Bing
    Zhang, Xue-Er
    Wang, Bin
    Lu, Xing
    MODERN PHYSICS LETTERS B, 2022, 36 (15):
  • [47] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrodinger equations
    Li, Zai-Dong
    Huo, Cong-Zhe
    Li, Qiu-Yan
    He, Peng-Bin
    Xu, Tian-Fu
    CHINESE PHYSICS B, 2018, 27 (04)
  • [48] The fractional nonlinear Schrodinger equation: Soliton turbulence, modulation instability, and extreme rogue waves
    Zhong, Ming
    Weng, Weifang
    Guo, Boling
    Yan, Zhenya
    CHAOS, 2025, 35 (01)
  • [49] The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation
    Dai, Chao-Qing
    Wang, Yue-Yue
    Tian, Qing
    Zhang, Jie-Fang
    ANNALS OF PHYSICS, 2012, 327 (02) : 512 - 521
  • [50] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrodinger equation
    Ma Zheng-Yi
    Ma Song-Hua
    CHINESE PHYSICS B, 2012, 21 (03)