Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation

被引:1
|
作者
Guo, Ya-Hui [1 ]
Zuo, Da-Wei [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 04期
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; breather; rogue wave; MECHANISMS; SYSTEM;
D O I
10.1007/s12043-023-02674-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the modified Darboux transformation, a new first-order solution of coupled fourth-order nonlinear Schrodinger equation (cNLS) is constructed. The amplitude of rogue wave, distance of the breather and the rogue wave can be changed if we adjust parameter d(1). With the adjustment of the parameter c(2), the breather and the rogue wave can be converted into each other, and the direction of propagation of the breather can be changed. When the initial wave height takes different values, images of the breather and the rogue wave as well as soliton-like and rogue waves can be presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Generation mechanism of rogue waves for the discrete nonlinear Schrodinger equation
    Li, Min
    Shui, Juan-Juan
    Xu, Tao
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 110 - 115
  • [42] Mixed Higher-Order Rogue Waves and Solitons for the Coupled Modified Nonlinear Schrodinger Equation
    Xu, Tao
    He, Guoliang
    Wang, Ming
    Wang, Yanqing
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [43] Rogue waves of the nonlinear Schrodinger equation with even symmetric perturbations
    Ankiewicz, Adrian
    Chowdhury, Amdad
    Devine, Natasha
    Akhmediev, Nail
    JOURNAL OF OPTICS, 2013, 15 (06)
  • [44] Simple determinant representation for rogue waves of the nonlinear Schrodinger equation
    Ling, Liming
    Zhao, Li-Chen
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [45] Rogue waves for a system of coupled derivative nonlinear Schrodinger equations
    Chan, H. N.
    Malomed, B. A.
    Chow, K. W.
    Ding, E.
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [46] Soliton, Breather and Rogue Wave Solutions for the Nonlinear Schrodinger Equation Coupled to a Multiple Self-Induced Transparency System
    Wang, Xin
    Wang, Lei
    CHINESE PHYSICS LETTERS, 2018, 35 (03)
  • [47] Breather, soliton and rogue wave of a two-component derivative nonlinear Schrodinger equation
    Jia, Hui-Xian
    Zuo, Da-Wei
    Li, Xiang-Hong
    Xiang, Xiao-Shuo
    PHYSICS LETTERS A, 2021, 405
  • [48] Vector rogue waves in the mixed coupled nonlinear Schrodinger equations
    Li, Min
    Liang, Huan
    Xu, Tao
    Liu, Changjing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (04):
  • [49] Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [50] Rogue waves, breather waves and solitary waves for a (3+1)-dimensional nonlinear evolution equation
    Xie, Jingjing
    Yang, Xiao
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 6 - 13