Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation

被引:1
|
作者
Guo, Ya-Hui [1 ]
Zuo, Da-Wei [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 04期
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; breather; rogue wave; MECHANISMS; SYSTEM;
D O I
10.1007/s12043-023-02674-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the modified Darboux transformation, a new first-order solution of coupled fourth-order nonlinear Schrodinger equation (cNLS) is constructed. The amplitude of rogue wave, distance of the breather and the rogue wave can be changed if we adjust parameter d(1). With the adjustment of the parameter c(2), the breather and the rogue wave can be converted into each other, and the direction of propagation of the breather can be changed. When the initial wave height takes different values, images of the breather and the rogue wave as well as soliton-like and rogue waves can be presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrodinger Equation
    Wang Xiao-Li
    Zhang Wei-Guo
    Zhai Bao-Guo
    Zhang Hai-Qiang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (04) : 531 - 538
  • [32] Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation
    Liu, Xiaotong
    Yong, Xuelin
    Huang, Yehui
    Yu, Rui
    Gao, Jianwei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 257 - 266
  • [33] A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrodinger equation
    Wang, Rui-Qi
    Ling, Liming
    Zeng, Delu
    Feng, Bao-Feng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [34] Excitation of optical rogue waves to a (2+1)-dimensional nonlinear Schrodinger equation in nonlocal optical fibers
    Li, Bang-Qing
    Ma, Yu-Lan
    OPTIK, 2018, 174 : 178 - 184
  • [35] Coupled cubic-quintic nonlinear Schrodinger equation: novel bright-dark rogue waves and dynamics
    Yan, Xue-Wei
    Zhang, Jiefang
    NONLINEAR DYNAMICS, 2020, 100 (04) : 3733 - 3743
  • [36] New rogue waves and dark-bright soliton solutions for a coupled nonlinear Schrodinger equation with variable coefficients
    Yu, Fajun
    Yan, Zhenya
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 351 - 358
  • [37] Explicit breather solution of the nonlinear Schrodinger equation
    Conte, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 209 (01) : 1357 - 1366
  • [38] STUDY ON BREATHER-TYPE ROGUE WAVE BASED ON FOURTH-ORDER NONLINEAR SCHRODINGER EQUATION
    Lu, Wenyue
    Yang, Jianmin
    Lv, Haining
    Li, Xin
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 4B, 2014,
  • [39] Solitons, breathers and rogue waves in the coupled nonlocal reverse-time nonlinear Schrodinger equations
    Wang, Xin
    Li, Chuanzhong
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [40] Self-similar rogue waves in an inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Gupta, Rama
    Kaur, Harleen
    Rajan, M. S. Mani
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2137 - 2141