Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation

被引:1
|
作者
Guo, Ya-Hui [1 ]
Zuo, Da-Wei [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 04期
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; breather; rogue wave; MECHANISMS; SYSTEM;
D O I
10.1007/s12043-023-02674-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the modified Darboux transformation, a new first-order solution of coupled fourth-order nonlinear Schrodinger equation (cNLS) is constructed. The amplitude of rogue wave, distance of the breather and the rogue wave can be changed if we adjust parameter d(1). With the adjustment of the parameter c(2), the breather and the rogue wave can be converted into each other, and the direction of propagation of the breather can be changed. When the initial wave height takes different values, images of the breather and the rogue wave as well as soliton-like and rogue waves can be presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Two parameters wronskian representation of solutions of nonlinear Schrodinger equation, eighth Peregrine breather and multi-rogue waves
    Gaillard, Pierre
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (09)
  • [32] Rogue Waves: From Nonlinear Schrodinger Breather Solutions to Sea-Keeping Test
    Onorato, Miguel
    Proment, Davide
    Clauss, Guenther
    Klein, Marco
    PLOS ONE, 2013, 8 (02):
  • [33] Rogue waves, breather-to-soliton transitions and modulational instability for the nonlinear Schrodinger equation with octic operator in an optical fiber
    Jia, Shu-Liang
    Gao, Yi-Tian
    Hu, Lei
    OPTIK, 2017, 142 : 90 - 102
  • [34] Rogue waves for an inhomogeneous discrete nonlinear Schrodinger equation in a lattice
    Wu, Xiao-Yu
    Tian, Bo
    Du, Zhong
    Du, Xia-Xia
    MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [35] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [36] Novel Rogue Waves for a Mixed Coupled Nonlinear Schrodinger Equation on Darboux-Dressing Transformation
    Dong, Min-Jie
    Tian, Li-Xin
    Wei, Jing-Dong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 22 - 34
  • [37] Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation
    Bertola, Marco
    El, Gennady A.
    Tovbis, Alexander
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):
  • [38] Novel rogue waves and dynamics in the integrable pair-transition-coupled nonlinear Schrodinger equation
    Wang, Xiubin
    Han, Bo
    APPLIED MATHEMATICS LETTERS, 2020, 99
  • [39] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [40] The manipulation of optical rogue waves for the nonautonomous nonlinear Schrodinger equation
    Dai, Chao-Qing
    Zhu, Hai-Ping
    CANADIAN JOURNAL OF PHYSICS, 2012, 90 (04) : 359 - 364