Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation

被引:1
|
作者
Guo, Ya-Hui [1 ]
Zuo, Da-Wei [1 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 04期
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equation; breather; rogue wave; MECHANISMS; SYSTEM;
D O I
10.1007/s12043-023-02674-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the modified Darboux transformation, a new first-order solution of coupled fourth-order nonlinear Schrodinger equation (cNLS) is constructed. The amplitude of rogue wave, distance of the breather and the rogue wave can be changed if we adjust parameter d(1). With the adjustment of the parameter c(2), the breather and the rogue wave can be converted into each other, and the direction of propagation of the breather can be changed. When the initial wave height takes different values, images of the breather and the rogue wave as well as soliton-like and rogue waves can be presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Breather and rogue wave solutions for a nonlinear Schrodinger-type system in plasmas
    Meng, Gao-Qing
    Qin, Jin-Lei
    Yu, Guo-Liang
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 739 - 751
  • [22] BI-SOLITONS, BREATHER SOLUTION FAMILY AND ROGUE WAVES FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION
    Liu, Changfu
    Chen, Min
    Zhou, Ping
    Chen, Longwei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (02): : 367 - 375
  • [23] Rogue waves for an inhomogeneous discrete nonlinear Schrodinger equation in a lattice
    Wu, Xiao-Yu
    Tian, Bo
    Du, Zhong
    Du, Xia-Xia
    MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [24] Novel Rogue Waves for a Mixed Coupled Nonlinear Schrodinger Equation on Darboux-Dressing Transformation
    Dong, Min-Jie
    Tian, Li-Xin
    Wei, Jing-Dong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 22 - 34
  • [25] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [26] Vector rogue waves in the mixed coupled nonlinear Schrodinger equations
    Li, Min
    Liang, Huan
    Xu, Tao
    Liu, Changjing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (04):
  • [27] Nonlinear Dynamics of Rogue Waves in a Fifth-Order Nonlinear Schrodinger Equation
    Song, Ni
    Xue, Hui
    Zhao, Xiaoying
    IEEE ACCESS, 2020, 8 : 9610 - 9618
  • [28] From a breather homoclinic wave to a rogue wave solution for the coupled Schrodinger-Boussinesq equation
    Wang, Chuanjian
    Dai, Zhengde
    Liu, Changfu
    PHYSICA SCRIPTA, 2014, 89 (07)
  • [29] Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber
    Xi-Hu Wu
    Yi-Tian Gao
    Xin Yu
    Liu-Qing Li
    Cui-Cui Ding
    Nonlinear Dynamics, 2023, 111 : 5641 - 5653
  • [30] Breather and rogue wave solutions of an extended nonlinear Schrodinger equation with higher-order odd and even terms
    Su, Dan
    Yong, Xuelin
    Tian, Yanjiao
    Tian, Jing
    MODERN PHYSICS LETTERS B, 2018, 32 (26):