Improved Triboelectric Nanogenerators for Self-Powered Systems in Flexible Electronic Devices

被引:0
|
作者
Luo, Xiangxiang [1 ]
Li, Feng [1 ]
Qiao, Chengfang [1 ]
Yuan, Fei [1 ]
Zhou, Chunsheng [1 ]
机构
[1] Shangluo Univ, Sch Chem Engn & Modern Mat, Shangluo 726000, Peoples R China
关键词
Flexible Electronic Devices; Triboelectric Nanogenerators; Self-Powered Systems; Liquid Metals; OPTIMIZATION; NETWORK;
D O I
10.1166/jno.2023.3464
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the number of flexible electronic devices grows dramatically, the energy harvesting and storage technology of flexible electronic devices also urgently needs to advance. Traditional flexible electronic devices are battery-powered, which not only suffer from short endurance and large size, but also do not meet the new era requirement of environmental protection and energy saving. Therefore, this study investigates the selfpowered system in flexible electronic devices using the Triboelectric Nanogenerator (TENG) technology. The research innovatively optimizes the TENG, proposes a liquid metal triboelectric Nanogenerator (LMTENG), and optimizes the optimal path selection problem. In the test results, the optimal output power of 567.3 mu W is obtained when the contact frequency is 2 Hz for an external load of 15 M Omega. By comparing with the current TENG, the LMTENG significantly improves the optimal output power. On the other hand, the LMTENG is able to respond to a pressure of 22 kPa and maintain normal performance at 50% stretching. The study provides new ideas for improvement of triboelectric nanogenerators and also contributes to the optimization of flexible P: 203 8 109 20 On: Mon 20 Nov 2023 08 14 41 electronic devices.
引用
收藏
页码:888 / 896
页数:9
相关论文
共 50 条
  • [1] Triboelectric nanogenerators as self-powered active sensors
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    NANO ENERGY, 2015, 11 : 436 - 462
  • [2] Triboelectric nanogenerators for self-powered neurostimulation
    Xu, Shumao
    Manshaii, Farid
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    NANO RESEARCH, 2024, 17 (10) : 8926 - 8941
  • [3] Triboelectric Nanogenerators for Self-Powered Wound Healing
    Xiao, Xiao
    Nashalian, Ardo
    Libanori, Alberto
    Fang, Yunsheng
    Li, Xiyao
    Chen, Jun
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [4] Advances in Triboelectric Nanogenerators for Self-powered Neuromodulation
    Elsanadidy, Esraa
    Mosa, Islam M.
    Luo, Dan
    Xiao, Xiao
    Chen, Jun
    Wang, Zhong Lin
    Rusling, James F.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [5] Triboelectric Nanogenerators for Self-Powered Breath Monitoring
    Shen, Sophia
    Xiao, Xiao
    Xiao, Xiao
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 3952 - 3965
  • [6] Piezoelectric and triboelectric nanogenerators: Promising technologies for self-powered implantable biomedical devices
    Khan, Arshad
    Joshi, Ravindra
    Sharma, Manish Kumar
    Ganguly, Anindita
    Parashar, Parag
    Wang, Ting-Wei
    Lee, Sangmin
    Kao, Fu-Cheng
    Lin, Zong-Hong
    NANO ENERGY, 2024, 119
  • [7] Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing
    Yao, Guo
    Xu, Liang
    Cheng, Xiaowen
    Li, Yangyang
    Huang, Xin
    Guo, Wei
    Liu, Shaoyu
    Wang, Zhong Lin
    Wu, Hao
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
  • [8] Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare
    Che, Ziyuan
    O'Donovan, Sarah
    Xiao, Xiao
    Wan, Xiao
    Chen, Guorui
    Zhao, Xun
    Zhou, Yihao
    Yin, Junyi
    Chen, Jun
    SMALL, 2023, 19 (51)
  • [9] Self-powered electroporation technologies based on triboelectric nanogenerators
    Liu, Yitong
    Wang, Peng
    Wang, Congyu
    Yao, Shengxun
    Zhang, Dun
    NANO ENERGY, 2024, 123
  • [10] Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators
    Wang, Nannan
    Liu, Yupeng
    Ye, Enyi
    Li, Zibiao
    Wang, Daoai
    ADVANCED SENSOR RESEARCH, 2023, 2 (05):