Magnetism in carbon-based fiber materials

被引:3
|
作者
Ranade, Varun [1 ]
Gautam, Sanjeev [1 ]
Chae, Keun Hwa [2 ]
机构
[1] Panjab Univ, Dr SSB Univ Inst Chem Engn & Technol, Adv Funct Mat Lab, Chandigarh 160014, India
[2] Korea Inst Sci & Technol, Adv Anal & Data Ctr, Seoul 02792, South Korea
关键词
Carbon-based magnets; Magnetic polymers; FERROMAGNETIC EXCHANGE; TEMPERATURE; GRAPHENE; SILK; NANOCELLULOSE; NANOPARTICLES; PERFORMANCE; NANOTUBES; FULLERENE;
D O I
10.1016/j.jmmm.2023.171210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal-free ferromagnetic materials have gained significant attention as an appealing alternative to traditional inorganic magnets due to their biocompatibility, biodegradability, low production cost, flexibility, solubility in organic solvents, and electrical insulation properties. These features make them highly desirable for biomedical and spintronic applications. The origin of magnetism in these materials is linked to the presence of unpaired electrons, defects, or functional groups that induce local magnetic moments. However, achieving ferromagnetic interaction among persistent carbon radicals within a molecule has been a challenging endeavor. Various strategies have been explored to induce ferromagnetism in carbon-based materials, including defect induction, steric hindrance, and doping with trivalent or pentavalent species like Boron (B) and Nitrogen (N). These approaches have successfully led to the development of organic magnets in different dimensions, ranging from 0D to 3D.Recent advancements in synthesizing organic magnets exhibiting ferromagnetism above room temperature have reignited interest among physicists and chemists in the realm of organic spintronic materials. Furthermore, the integration of magnetic nanoparticles into carbon nanotubes has been a prominent research focus. Understanding the underlying mechanisms of magnetism in carbon-based polymers, such as graphene, carbon nanotubes, and fullerenes, has been the subject of extensive studies over the past few decades. This article presents a critical review of recent research on carbon-based magnetic polymers, including their limitations and applications. The emergence of magnetism in carbon-based 2D materials holds immense potential for spintronics and high-density data storage applications, contributing to the advancement of quantum computing and empowering artificial intelligence.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hydrothermal corrosion of carbon-based materials
    Gogotsi, Y
    Libera, J
    HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 5, PTS 1 AND 2, 2001, 369-3 : 982 - 982
  • [22] Carbon-based materials for electrochemical dechlorination
    Guoqiang Gan
    Guo Hong
    Wenjun Zhang
    Nano Research, 2023, 16 : 12543 - 12557
  • [23] Fullerenes as precursors of carbon-based materials
    Milani, P
    Manfredini, M
    Bottani, CE
    SYNTHETIC METALS, 1996, 77 (1-3) : 81 - 83
  • [24] Plasma production in carbon-based materials
    Giuffreda, E.
    Delle Side, A.
    Nassisi, V.
    Krasa, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 406 : 225 - 228
  • [25] Carbon-based optical limiting materials
    Yan Wang
    Mingzhe Lv
    Jin Guo
    Tingfeng Wang
    Junfeng Shao
    Dong Wang
    Ying-Wei Yang
    Science China(Chemistry), 2015, 58 (12) : 1782 - 1791
  • [26] Carbon-based materials for electrochemical dechlorination
    Gan, Guoqiang
    Hong, Guo
    Zhang, Wenjun
    NANO RESEARCH, 2023, 16 (11) : 12543 - 12557
  • [27] Carbon-based optical limiting materials
    Wang, Yan
    Lv, Mingzhe
    Guo, Jin
    Wang, Tingfeng
    Shao, Junfeng
    Wang, Dong
    Yang, Ying-Wei
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (12) : 1782 - 1791
  • [28] Carbon-based materials studied by PEELS
    Brydson, R
    Jiang, X
    Westwood, A
    Collins, S
    Lu, S
    Rand, B
    ELECTRON MICROSCOPY AND ANALYSIS 1997, 1997, (153): : 515 - 518
  • [29] A study on the cytotoxicity of carbon-based materials
    Saha, Dipendu
    Heldt, Caryn L.
    Gencoglu, Maria F.
    Vijayaragavan, K. Saagar
    Chen, Jihua
    Saksule, Ashish
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 68 : 101 - 108
  • [30] Carbon-based materials for microelectronics - Preface
    Robertson, J
    Fink, J
    Kohn, E
    Walton, D
    CARBON, 1999, 37 (05) : 715 - 715