Bright, dark, periodic soliton solutions and other analytical solutions of a time-dependent coefficient (2+1)-dimensional Zakharov-Kuznetsov equation

被引:12
作者
Mabenga, C. [1 ]
Muatjetjeja, B. [1 ,2 ]
Motsumi, T. G. [1 ]
机构
[1] Univ Botswana, Fac Sci, Dept Math, Private Bag 22, Gaborone, Botswana
[2] Northwest Univ, Dept Math Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
Time-dependent coefficient Zakharov-Kuznetsov equation; Bright; Dark; Singular and periodic wave solutions; Lie point symmetries; Conservation laws; NONLINEAR EVOLUTION-EQUATIONS; HOMOGENEOUS BALANCE METHOD; FUNCTION EXPANSION METHOD; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION-METHOD; IMPROVED F-EXPANSION; EXP-FUNCTION METHOD; SINE-COSINE METHOD; TANH METHOD; (G'/G)-EXPANSION METHOD;
D O I
10.1007/s11082-023-05428-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to implement solitary wave ansatz methods to obtain a variety of solitary wave solutions and periodic wave solution of a time-dependent coefficient (2 + 1)-dimensional Zakharov-Kuznetsov (tdcZK) equation. Several remarkable constrains on the parameters for the existence of the solitary wave solutions will be reported. The classical symmetry method will also be employed to derive exact solutions of the tdcZK. Furthermore, we construct conservation laws of the tdcZK via the multiplier method.
引用
收藏
页数:18
相关论文
共 63 条