Atomically precise vacancy-assembled quantum antidots

被引:18
|
作者
Fang, Hanyan [1 ]
Mahalingam, Harshitra [2 ]
Li, Xinzhe [3 ]
Han, Xu [1 ]
Qiu, Zhizhan [2 ]
Han, Yixuan [1 ]
Noori, Keian [2 ,4 ]
Dulal, Dikshant [5 ]
Chen, Hongfei [6 ]
Lyu, Pin [1 ]
Yang, Tianhao [1 ]
Li, Jing [7 ]
Su, Chenliang [8 ]
Chen, Wei [1 ,4 ]
Cai, Yongqing [6 ]
Castro Neto, A. H. [2 ,4 ]
Novoselov, Kostya S. [2 ,4 ]
Rodin, Aleksandr [4 ,5 ,9 ]
Lu, Jiong [1 ,2 ,4 ]
机构
[1] Natl Univ Singapore, Dept Chem, Singapore, Singapore
[2] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore, Singapore
[3] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian, Peoples R China
[4] Natl Univ Singapore, CA2DM, Singapore, Singapore
[5] Yale NUS Coll, Singapore, Singapore
[6] Univ Macau, Inst Appl Phys & Mat Engn, Joint Key Lab, Minist Educ, Taipa, Macao, Peoples R China
[7] Beihang Univ, Sch Chem, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ, Beijing, Peoples R China
[8] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Shenzhen, Peoples R China
[9] Natl Univ Singapore, Mat Sci & Engn, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
HOT-ELECTRON GENERATION; LOGIC GATE; SEMICONDUCTOR; GRAPHENE; STATES;
D O I
10.1038/s41565-023-01495-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies. We developed a technique to fabricate atomically precise quantum antidots with unprecedented robustness and tunable quantum hole states through self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
引用
收藏
页码:1401 / 1408
页数:22
相关论文
共 50 条
  • [1] Quantum Hall effect in semiconductor systems with quantum dots and antidots
    Beltukov, Ya M.
    Greshnov, A. A.
    SEMICONDUCTORS, 2015, 49 (04) : 483 - 491
  • [2] Raman Fingerprints of Atomically Precise Graphene Nanoribbons
    Verzhbitskiy, Ivan A.
    De Corato, Marzio
    Ruini, Alice
    Molinari, Elisa
    Narita, Akimitsu
    Hu, Yunbin
    Schwab, Matthias G.
    Bruna, Matteo
    Yoon, Duhee
    Milana, Silvia
    Feng, Xinliang
    Muellen, Klaus
    Ferrari, Andrea C.
    Casiraghi, Cinzia
    Prezzi, Deborah
    NANO LETTERS, 2016, 16 (06) : 3442 - 3447
  • [3] Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes
    Kou, A.
    Marcus, C. M.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [4] Optical properties of quantum dots versus quantum antidots: Effects of hydrostatic pressure and temperature
    Naimi, Y.
    Jafari, A. R.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 666 - 672
  • [5] Design of Atomically Precise Nanoscale Negative Differential Resistance Devices
    Xiao, Zhongcan
    Ma, Chuanxu
    Huang, Jingsong
    Liang, Liangbo
    Lu, Wenchang
    Hong, Kunlun
    Sumpter, Bobby G.
    Li, An-Ping
    Bernholc, Jerzy
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (02)
  • [6] Tuning the spintronic properties of graphene with atomically precise Au clusters
    Keijers, Wout
    Murugesan, Ramasamy
    Libeert, Guillaume
    Scheerder, Jeroen E.
    Raes, Bart
    Brems, Steven
    De Gendt, Stefan
    Houssa, Michel
    Janssens, Ewald
    Van de Vondel, Joris
    JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (04):
  • [7] Atomically Precise Synthesis and Characterization of Heptauthrene with Triplet Ground State
    Su, Xuelei
    Li, Can
    Du, Qingyang
    Tao, Kun
    Wang, Shiyong
    Yu, Ping
    NANO LETTERS, 2020, 20 (09) : 6859 - 6864
  • [8] Atomically-Precise Texturing of Hexagonal Boron Nitride Nanostripes
    Ali, Khadiza
    Fernandez, Laura
    Kherelden, Mohammad A.
    Makarova, Anna A.
    Pis, Igor
    Bondino, Federica
    Lawrence, James
    de Oteyza, Dimas G.
    Usachov, Dmitry Yu.
    Vyalikh, Denis V.
    Garcia de Abajo, F. Javier
    Abd El-Fattah, Zakaria M.
    Ortega, J. Enrique
    Schiller, Frederik
    ADVANCED SCIENCE, 2021, 8 (17)
  • [9] Imaging backscattering through impurity-induced antidots in quantum Hall constrictions
    Paradiso, Nicola
    Heun, Stefan
    Roddaro, Stefano
    Biasiol, Giorgio
    Sorba, Lucia
    Venturelli, Davide
    Taddei, Fabio
    Giovannetti, Vittorio
    Beltram, Fabio
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [10] Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters
    Zhou, Meng
    Jin, Rongchao
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 72, 2021, 72 : 121 - 142