ON SUBLINEAR SINGULAR (P,Q) LAPLACIAN PROBLEMS

被引:2
作者
Alreshidi, B. [1 ]
Hai, D. D. [1 ]
Shivaji, R. [2 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ N Carolina, Dept Math & Stat, Grennsboro, NC 27402 USA
关键词
STRONG MAXIMUM PRINCIPLE; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EQUATION;
D O I
10.3934/cpaa.2023087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a positive solution to the (p, q) Laplacian problem- increment pu - increment qu = & lambda;f (u) in & OHM;, u = 0 on partial differential & OHM;,where & OHM; is a bounded domain in Rn with smooth boundary partial differential & OHM;, p > q > 1, increment ru = div(| backward difference u|r-2 backward difference u), f : (0,& INFIN;) & RARR; R is continuous, p-sublinear at & INFIN; and is allowed to be singular at 0, and & lambda; > 0 is a large parameter.
引用
收藏
页码:2773 / 2783
页数:11
相关论文
共 19 条