Metal-Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid

被引:10
作者
Xie, Wen-Jun [1 ,2 ]
Mulina, Olga M. [3 ]
Terent'ev, Alexander O. [3 ]
He, Liang-Nian [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Elementoorgan Chem, Coll Chem, Tianjin 300071, Peoples R China
[3] Russian Acad Sci, Zelinsky Inst Organ Chem, 47 Leninsky Prospect, Moscow 119991, Russia
基金
中国国家自然科学基金;
关键词
metal-organic frameworks; electrocatalysis; CO2; reduction; electrochemical reduction; carbonization; ELECTROCHEMICAL REDUCTION; ELECTROREDUCTION; CATALYSTS; FORMATE; NANOPARTICLES; MOF; PD;
D O I
10.3390/catal13071109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) are used in catalysis due to their high specific surface area and porous structure. The dispersed active sites and limited reaction space that render MOFs have the potential for highly selective electrocatalytic CO2 reduction reaction (ECO2RR). Meanwhile, formic acid (HCOOH) is attracting attention as a liquid product with high economic benefits. This review summarizes the MOFs and their derivatives applied for ECO2RR into HCOOH products. The preparation methods of MOFs as electrocatalysts and their unique advantages are discussed. A series of MOFs and MOF derivatives obtained by electrochemical reduction or carbonization processes are highlighted, including metal nanomaterials, carbon-based nanocomposites, single-atom catalysts, and bimetallic nanocomposites. Depending on the MOF building units (metal ions and organic linkers) and the reaction conditions of derivatization, MOF-based catalysts exhibit rich diversity and controllable modulation of catalytic performance. Finally, the challenges encountered at this stage and the future research directions of MOF-based catalysts are proposed.
引用
收藏
页数:25
相关论文
共 63 条
[1]   Carbon-based electrocatalysts for CO2 electroreduction produced via MOF, biomass, and other precursors carbonization: A review [J].
Abdelkader-Fernandez, Victor K. ;
Fernandes, Diana M. ;
Freire, Cristina .
JOURNAL OF CO2 UTILIZATION, 2020, 42
[2]   Designing Atomically Dispersed Au on Tensile-Strained Pd for Efficient CO2 Electroreduction to Formate [J].
Bok, Jinsol ;
Lee, Si Young ;
Lee, Byoung-Hoon ;
Kim, Cheonghee ;
Nguyen, Dang Le Tri ;
Kim, Ji Won ;
Jung, Euiyeon ;
Lee, Chan Woo ;
Jung, Yoon ;
Lee, Hyeon Seok ;
Kim, Jiheon ;
Lee, Kangjae ;
Ko, Wonjae ;
Kim, Young Seong ;
Cho, Sung-Pyo ;
Yoo, Jong Suk ;
Hyeon, Taeghwan ;
Hwang, Yun Jeong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (14) :5386-5395
[3]   Metal-Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Gu, Jia-Fang ;
Xie, Xiuyuan ;
Zeng, Guang ;
Li, Xiaofang ;
Han, Shu-Guo ;
Zhu, Qi-Long ;
Wu, Xin-Tao ;
Xu, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) :15014-15020
[4]   Nitrogen-rich metal-organic framework mediated Cu-N-C composite catalysts for the electrochemical reduction of CO2 [J].
Cao, Si-Min ;
Chen, Hua-Bo ;
Dong, Bao-Xia ;
Zheng, Qiu-Hui ;
Ding, Yan-Xia ;
Liu, Meng-Jie ;
Qian, She-Liang ;
Teng, Yun-Lei ;
Li, Zong-Wei ;
Liu, Wen-Long .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :555-563
[5]   Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations [J].
Chughtai, Adeel H. ;
Ahmad, Nazir ;
Younus, Hussein A. ;
Laypkov, A. ;
Verpoort, Francis .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (19) :6804-6849
[6]   Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO2 Electroreduction to Formate [J].
Deng, Peilin ;
Yang, Fan ;
Wang, Zhitong ;
Chen, Shenghua ;
Zhou, Yinzheng ;
Zaman, Shahid ;
Xia, Bao Yu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10807-10813
[7]   Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate [J].
Deng, Yachen ;
Wang, Shifu ;
Huang, Yanqiang ;
Li, Xuning .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 43 :353-359
[8]   Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects [J].
Duarah, Prangan ;
Haldar, Dibyajyoti ;
Yadav, V. S. K. ;
Purkait, Mihir Kumar .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06)
[9]   Aluminum formate, Al(HCOO)3: An earth-abundant, scalable, and highly selective material for CO2 capture [J].
Evans, Hayden A. ;
Mullangi, Dinesh ;
Deng, Zeyu ;
Wang, Yuxiang ;
Peh, Shing Bo ;
Wei, Fengxia ;
Wang, John ;
Brown, Craig M. ;
Zhao, Dan ;
Canepa, Pieremanuele ;
Cheetham, Anthony K. .
SCIENCE ADVANCES, 2022, 8 (44)
[10]   Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study [J].
Fellay, Celine ;
Yan, Ning ;
Dyson, Paul J. ;
Laurenczy, Gabor .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (15) :3752-3760