Fucoidan-Coated Silica Nanoparticles Promote the Differentiation of Human Mesenchymal Stem Cells into the Osteogenic Lineage

被引:2
|
作者
Amorim, Sara [1 ,2 ]
Dudik, Olesia [1 ,2 ]
da Costa, Diana Soares [1 ,2 ]
Reis, Rui L. [1 ,2 ]
Silva, Tiago H. [1 ,2 ]
Pires, Ricardo A. [1 ,2 ]
机构
[1] Univ Minho, I3Bs Res Inst Biomat Biodegradables & Biomimet, Headquarters European Inst Excellence Tissue Engn, 3Bs Res Grp, P-4805017 Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, P-4805017 Braga, Portugal
关键词
fucoidan; silica nanoparticles; osteogenicdifferentiation; tissue engineering; ENHANCE; SHAPE; ACID;
D O I
10.1021/acsbiomaterials.3c00265
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Silica nanoparticles (SiNPs) are widely used in biomedicalapplications,such as cancer therapy/diagnosis or tissue engineering and regenerativemedicine. Herein, we synthesized SiNPs and modified them with sulfonicacid groups (by organosilylation followed by oxidation) or a sulfatedpolysaccharide (i.e., fucoidan, a seaweed biopolymer, by using electrostaticsurface immobilization) due to the known capacity of the sulfonic/sulfatemoieties to stabilize proteins and promote stem cell differentiationtoward the osteogenic lineage. The developed pristine and functionalizednanoparticles were characterized by dynamic light scattering (DLS),scanning electron microscopy (SEM), transmission electron microscopy(TEM), and X-ray photoelectron spectroscopy (XPS), showing the monodispersesize distribution (between 360 and 450 nm) and the success of thecoating/functionalization with fucoidan or sulfonic groups. The developedSiNPs (at a concentration of 50 & mu;g/mL) were assessed throughtheir contact with SaOs2 cells evidencing their cytocompatibility.Furthermore, the osteogenic differentiation of bmMSCs was evaluatedby the quantification of ALP activity, as well as the expression profileof osteogenic-related genes, such as Runx2, ALP, and OP. We foundthat the coating of the SiNPs with fucoidan induced the osteogenicdifferentiation of bmMSCs, being an effective mediator of bone regeneration.
引用
收藏
页码:4907 / 4915
页数:9
相关论文
共 50 条
  • [31] Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering
    Devi, Yashaswini G., V
    Nagendra, Apoorva H.
    Shenoy, Sudheer P.
    Chatterjee, Kaushik
    Venkatesan, Jayachandran
    MARINE DRUGS, 2022, 20 (10)
  • [32] Zn-Loaded and Calcium Phosphate-Coated Degradable Silica Nanoparticles Can Effectively Promote Osteogenesis in Human Mesenchymal Stem Cells
    Sutthavas, Pichaporn
    Schumacher, Matthias
    Zheng, Kai
    Habibovic, Pamela
    Boccaccini, Aldo Roberto
    van Rijt, Sabine
    NANOMATERIALS, 2022, 12 (17)
  • [33] Osteogenic Differentiation of Human Mesenchymal Stem Cells by the Single Action of Luminescent Polyurea Oxide Biodendrimers
    Pires, Rita F.
    Conde, Joao
    Bonifacio, Vasco D. B.
    ACS APPLIED BIO MATERIALS, 2020, 3 (12) : 9101 - 9108
  • [34] Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel
    Diaz, Luis A. Castillo
    Elsawy, Mohamed
    Saiani, Alberto
    Gough, Julie E.
    Miller, Aline F.
    JOURNAL OF TISSUE ENGINEERING, 2016, 7
  • [35] Europium Doped Monodispersed Bioactive Glass Nanoparticles Regulate the Osteogenic Differentiation of Human Marrow Mesenchymal Stem Cells
    Li, Feng
    Wang, Min
    Pi, Guofu
    Lei, Bo
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2018, 14 (04) : 756 - 764
  • [36] Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors
    Cho, HH
    Park, HT
    Kim, YJ
    Bae, YC
    Suh, KT
    Jung, JS
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2005, 96 (03) : 533 - 542
  • [37] Effects of icariin on the proliferation and osteogenic differentiation of human amniotic mesenchymal stem cells
    Wang, Fang
    Yang, Zhiyong
    He, Wei
    Song, Qinggao
    Wang, Kun
    Zhou, Yali
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2020, 15 (01)
  • [38] Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation
    Yu, Haiyang
    Tay, Chor Yong
    Leong, Wen Shing
    Tan, Samuel Chun Wei
    Liao, Kin
    Tan, Lay Poh
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 393 (01) : 150 - 155
  • [39] Epigenetic Regulation of Osteogenic Differentiation of Mesenchymal Stem Cells
    Fu, Gang
    Ren, Aishu
    Qiu, Yu
    Zhang, Yi
    CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (03) : 235 - 246
  • [40] Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells
    Sharifi, Simin
    Moghaddam, Farzin Arablouye
    Abedi, Atefeh
    Maleki Dizaj, Solmaz
    Ahmadian, Shahin
    Abdolahinia, Elaheh Dalir
    Khatibi, Seyed Mahdi Hosseiniyan
    Samiei, Mohammad
    BIOFACTORS, 2020, 46 (06) : 874 - 893