Fucoidan-Coated Silica Nanoparticles Promote the Differentiation of Human Mesenchymal Stem Cells into the Osteogenic Lineage

被引:2
|
作者
Amorim, Sara [1 ,2 ]
Dudik, Olesia [1 ,2 ]
da Costa, Diana Soares [1 ,2 ]
Reis, Rui L. [1 ,2 ]
Silva, Tiago H. [1 ,2 ]
Pires, Ricardo A. [1 ,2 ]
机构
[1] Univ Minho, I3Bs Res Inst Biomat Biodegradables & Biomimet, Headquarters European Inst Excellence Tissue Engn, 3Bs Res Grp, P-4805017 Guimaraes, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, P-4805017 Braga, Portugal
关键词
fucoidan; silica nanoparticles; osteogenicdifferentiation; tissue engineering; ENHANCE; SHAPE; ACID;
D O I
10.1021/acsbiomaterials.3c00265
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Silica nanoparticles (SiNPs) are widely used in biomedicalapplications,such as cancer therapy/diagnosis or tissue engineering and regenerativemedicine. Herein, we synthesized SiNPs and modified them with sulfonicacid groups (by organosilylation followed by oxidation) or a sulfatedpolysaccharide (i.e., fucoidan, a seaweed biopolymer, by using electrostaticsurface immobilization) due to the known capacity of the sulfonic/sulfatemoieties to stabilize proteins and promote stem cell differentiationtoward the osteogenic lineage. The developed pristine and functionalizednanoparticles were characterized by dynamic light scattering (DLS),scanning electron microscopy (SEM), transmission electron microscopy(TEM), and X-ray photoelectron spectroscopy (XPS), showing the monodispersesize distribution (between 360 and 450 nm) and the success of thecoating/functionalization with fucoidan or sulfonic groups. The developedSiNPs (at a concentration of 50 & mu;g/mL) were assessed throughtheir contact with SaOs2 cells evidencing their cytocompatibility.Furthermore, the osteogenic differentiation of bmMSCs was evaluatedby the quantification of ALP activity, as well as the expression profileof osteogenic-related genes, such as Runx2, ALP, and OP. We foundthat the coating of the SiNPs with fucoidan induced the osteogenicdifferentiation of bmMSCs, being an effective mediator of bone regeneration.
引用
收藏
页码:4907 / 4915
页数:9
相关论文
共 50 条
  • [1] The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells
    Yang, Xing
    Li, Yuanyuan
    Liu, Xujie
    Huang, Qianli
    He, Wei
    Zhang, Ranran
    Feng, Qingling
    Benayahu, Dafna
    BIOMEDICAL MATERIALS, 2017, 12 (01)
  • [2] Fucoidan-hybrid hydroxyapatite nanoparticles promote the osteogenic differentiation of human periodontal ligament stem cells under inflammatory condition
    Xie, Yutong
    Wang, Zhiguo
    Liu, Lubin
    Fan, Chun
    Wang, Jialu
    Yang, Jingshu
    Hao, Yandi
    Mei, Li
    Su, Wen
    Xu, Quanchen
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 270
  • [3] The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells
    Yang, Xing
    Liu, Xujie
    Li, Yuanyuan
    Huang, Qianli
    He, Wei
    Zhang, Ranran
    Feng, Qingling
    Benayahu, Dafna
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 81 : 341 - 348
  • [4] Artificial Extracellular Matrices Containing Bioactive Glass Nanoparticles Promote Osteogenic Differentiation in Human Mesenchymal Stem Cells
    Kroschwald, Lysann M.
    Allerdt, Felix
    Bernhardt, Anne
    Rother, Sandra
    Zheng, Kai
    Maqsood, Iram
    Halfter, Norbert
    Heinemann, Christiane
    Moeller, Stephanie
    Schnabelrauch, Matthias
    Hacker, Michael C.
    Rammelt, Stefan
    Boccaccini, Aldo R.
    Hintze, Vera
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [5] Purmorphamine and Oxysterols Accelerate and Promote Osteogenic Differentiation of Mesenchymal Stem Cells In Vitro
    Woeltje, Michael
    Boebel, Melanie
    Heiland, Max
    Beck-Broichsitter, Benedicta
    Al-Dam, Ahmad
    Groebe, Alexander
    Friedrich, Reinhard E.
    Hanken, Henning
    Smeets, Ralf
    IN VIVO, 2015, 29 (02): : 247 - 254
  • [6] Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells
    Crowder, Spencer W.
    Prasai, Dhiraj
    Rath, Rutwik
    Balikov, Daniel A.
    Bae, Hojae
    Bolotin, Kirill I.
    Sung, Hak-Joon
    NANOSCALE, 2013, 5 (10) : 4171 - 4176
  • [7] Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells
    Gaharwar, Akhilesh K.
    Mihaila, Silvia M.
    Swami, Archana
    Patel, Alpesh
    Sant, Shilpa
    Reis, Rui L.
    Marques, Alexandra P.
    Gomes, Manuela E.
    Khademhosseini, Ali
    ADVANCED MATERIALS, 2013, 25 (24) : 3329 - 3336
  • [8] Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations
    Qin, Hui
    Zhu, Chen
    An, Zhiquan
    Jiang, Yao
    Zhao, Yaochao
    Wang, Jiaxin
    Liu, Xin
    Hui, Bing
    Zhang, Xianlong
    Wang, Yang
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 : 2469 - 2478
  • [9] Insights into the Osteogenic Differentiation of Mesenchymal Stem Cells on Crystalline and Vitreous Silica
    Shou, Guohui
    Lin, Suya
    Shen, Shuxian
    He, Xuzhao
    Dong, Lingqing
    Cheng, Kui
    Weng, Wenjian
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (07) : 3352 - 3360
  • [10] Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance
    Zhang, Xu
    Zhu, Yanfei
    Fan, Lihong
    Ling, Junhong
    Yang, Li-Ye
    Wang, Nan
    Ouyang, Xiao-kun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 211 : 368 - 379