Synthesis of carbon dots with predictable photoluminescence by the aid of machine learning

被引:15
作者
Xing, Chenyu [1 ]
Chen, Gaoyu [1 ]
Zhu, Xia [1 ]
An, Jiakun [1 ]
Bao, Jianchun [1 ]
Wang, Xuan [2 ]
Zhou, Xiuqing [2 ]
Du, Xiuli [2 ]
Xu, Xiangxing [1 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[3] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dots (CDs); synthesis; photoluminescence (PL); machine learning (ML); PL prediction; GRAPHENE QUANTUM DOTS;
D O I
10.1007/s12274-023-5893-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dots (CDs) have wide application potentials in optoelectronic devices, biology, medicine, chemical sensors, and quantum techniques due to their excellent fluorescent properties. However, synthesis of CDs with controllable spectrum is challenging because of the diversity of the CD components and structures. In this report, machine learning (ML) algorithms were applied to help the synthesis of CDs with predictable photoluminescence (PL) under the excitation wavelengths of 365 and 532 nm. The combination of precursors was used as the variable. The PL peaks of the strongest intensity (?(s)) and the longest wavelength (?(l)) were used as target functions. Among six investigated ML models, the random forest (RF) model showed outstanding performance in the prediction of the PL peaks.
引用
收藏
页码:1984 / 1989
页数:6
相关论文
共 41 条
[1]   Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots [J].
Anwar, Sadat ;
Ding, Haizhen ;
Xu, Mingsheng ;
Hu, Xiaolong ;
Li, Zhenzhen ;
Wang, Jingmin ;
Liu, Li ;
Jiang, Lei ;
Wang, Dong ;
Dong, Chen ;
Yan, Manqing ;
Wang, Qiyang ;
Bi, Hong .
ACS APPLIED BIO MATERIALS, 2019, 2 (06) :2317-2338
[2]   A dual parameter FRET probe for measuring PKC and PKA activity in living cells [J].
Brumbaugh, J ;
Schleifenbaum, A ;
Gasch, A ;
Sattler, M ;
Schultz, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (01) :24-25
[3]   Machine Learning-Assisted Microfluidic Synthesis of Perovskite Quantum Dots [J].
Chen, Gaoyu ;
Zhu, Xia ;
Xing, Chenyu ;
Wang, Yongkai ;
Xu, Xiangxing ;
Bao, Jianchun ;
Huang, Jinghan ;
Zhao, Yurong ;
Wang, Xuan ;
Zhou, Xiuqing ;
Du, Xiuli ;
Wang, Xun .
ADVANCED PHOTONICS RESEARCH, 2023, 4 (01)
[4]   Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model [J].
Chen, Hsin-An ;
Tang, Ping-Han ;
Chen, Guan-Jie ;
Chang, Chien-Cheng ;
Pao, Chun-Wei .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (14) :3591-3599
[5]   Controlled Synthesis of Multicolor Carbon Dots Assisted by Machine Learning [J].
Chen, Jiao ;
Luo, Jun Bo ;
Hu, Mu Yuan ;
Zhou, Jun ;
Huang, Cheng Zhi ;
Liu, Hui .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (02)
[6]   Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications [J].
Chung, You Jung ;
Kim, Jinhyun ;
Park, Chan Beum .
ACS NANO, 2020, 14 (06) :6470-6497
[7]   Nanocrystal Quantum Dots: From Discovery to Modern Development [J].
Efros, Alexander L. ;
Brus, Louis E. .
ACS NANO, 2021, 15 (04) :6192-6210
[8]   Machine Learning for Predicting the Band Gaps of ABX3 Perovskites from Elemental Properties [J].
Gladkikh, Vladislav ;
Kim, Dong Yeon ;
Hajibabaei, Amir ;
Jana, Atanu ;
Myung, Chang Woo ;
Kim, Kwang S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (16) :8905-8918
[9]   Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields [J].
Han, Yu ;
Tang, Bijun ;
Wang, Liang ;
Bao, Hong ;
Lu, Yuhao ;
Guan, Cuntai ;
Zhang, Liang ;
Le, Mengying ;
Liu, Zheng ;
Wu, Minghong .
ACS NANO, 2020, 14 (11) :14761-14768
[10]   Engineering carbon quantum dots for photomediated theranostics [J].
Hassan, Mahbub ;
Gomes, Vincent G. ;
Dehghani, Alireza ;
Ardekani, Sara M. .
NANO RESEARCH, 2018, 11 (01) :1-41