Anomaly detection for fault detection in wireless community networks using machine learning

被引:10
|
作者
Cerda-Alabern, Llorenc [1 ]
Iuhasz, Gabriel [2 ]
Gemmi, Gabriele [1 ,3 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] West Univ, Timisoara, Romania
[3] Univ Venice Ca Foscari, Venice, Italy
关键词
Fault detection; Anomaly detection; Machine learning; Wireless network dataset; Wireless community networks; INTRUSION DETECTION SYSTEMS; OUTLIER DETECTION; FEATURE-SELECTION; PCA;
D O I
10.1016/j.comcom.2023.02.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning has received increasing attention in computer science in recent years and many types of methods have been proposed. In computer networks, little attention has been paid to the use of ML for fault detection, the main reason being the lack of datasets. This is motivated by the reluctance of network operators to share data about their infrastructure and network failures. In this paper, we attempt to fill this gap using anomaly detection techniques to discern hardware failure events in wireless community networks. For this purpose we use 4 unsupervised machine learning, ML, approaches based on different principles. We have built a dataset from a production wireless community network, gathering traffic and non-traffic features, e.g. CPU and memory. For the numerical analysis we investigated the ability of the different ML approaches to detect an unprovoked gateway failure that occurred during data collection. Our numerical results show that all the tested approaches improve to detect the gateway failure when non-traffic features are also considered. We see that, when properly tuned, all ML methods are effective to detect the failure. Nonetheless, using decision boundaries and other analysis techniques we observe significant different behavior among the ML methods.
引用
收藏
页码:191 / 203
页数:13
相关论文
共 50 条
  • [1] Wireless Sensor Networks Anomaly Detection Using Machine Learning: A Survey
    Haque, Ahshanul
    Chowdhury, Naseef-Ur-Rahman
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 491 - 506
  • [2] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    Priya, P. Indira
    Muthurajkumar, S.
    Daisy, S. Sheeba
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 122 (03) : 2441 - 2462
  • [3] Anomaly Detection in Industrial Networks using Machine Learning: A Roadmap
    Meshram, Ankush
    Haas, Christian
    MACHINE LEARNING FOR CYBER PHYSICAL SYSTEMS, 2017, 3 : 65 - 72
  • [4] Anomaly detection in wireless sensor network using machine learning algorithm
    Poornima, I. Gethzi Ahila
    Paramasivan, B.
    COMPUTER COMMUNICATIONS, 2020, 151 : 331 - 337
  • [5] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    P. Indira Priya
    S. Muthurajkumar
    S. Sheeba Daisy
    Wireless Personal Communications, 2022, 122 : 2441 - 2462
  • [6] MLTs-ADCNs: Machine Learning Techniques for Anomaly Detection in Communication Networks
    Oleiwi, Haider W.
    Mhawi, Doaa N.
    Al-Raweshidy, Hamed
    IEEE ACCESS, 2022, 10 : 91006 - 91017
  • [7] Hybrid Machine Learning Model for Anomaly Detection in Unlabelled Data of Wireless Sensor Networks
    Anushka Srivastava
    Manoranjan Rai Bharti
    Wireless Personal Communications, 2023, 129 : 2693 - 2710
  • [8] Hybrid Machine Learning Model for Anomaly Detection in Unlabelled Data of Wireless Sensor Networks
    Srivastava, Anushka
    Bharti, Manoranjan Rai
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 129 (04) : 2693 - 2710
  • [9] Machine Learning Methods for Anomaly Detection in BACnet Networks
    Tonejc, Jernej
    Guettes, Sabrina
    Kobekova, Alexandra
    Kaur, Jaspreet
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2016, 22 (09) : 1203 - 1224
  • [10] Machine Learning Approaches for Anomaly Detection in IoT Networks
    Kumar, Gotte Ranjith
    Kulkarni, Anagha Deepak
    Kumar, B. Santhosh
    Singh, Navdeep
    Revathi, V
    Kumar, T. Ch. Anil
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,