Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation

被引:8
|
作者
Raghunath, Ananditha [1 ]
Nguyen, Dan D. [2 ]
Schram, Matthew [3 ]
Albert, David [3 ]
Gollakota, Shyamnath [1 ]
Shapiro, Linda [1 ]
Sridhar, Arun R. [4 ,5 ]
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA USA
[2] St Lukes Mid Amer Heart Inst, Kansas City, MO USA
[3] AliveCor Inc, Mountain View, CA USA
[4] Univ Washington, Heart Inst, Dept Med, Seattle, WA USA
[5] Univ Washington, Div Cardiol, POB 356422, 1959 NE Pacific St, Seattle, WA 98195 USA
来源
关键词
Artificial intelligence-based electrocardiographic anal-ysis; Atrial fibrillation; Atrial fibrillation event prediction; Mobile electrocardiography; Scalable technology; Sinus rhythm; ISCHEMIC-STROKE; APPENDAGE; RISK;
D O I
10.1016/j.cvdhj.2023.01.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Paroxysmal atrial fibrillation (AF) often eludes early diagnosis, resulting in significant morbidity and mortality. Artificial intelligence (AI) has been used to predict AF from sinus rhythm electrocardiograms (ECGs), but AF prediction using sinus rhythm mobile electrocardiograms (mECG) remains unexplored.OBJECTIVE The purpose of this study was to investigate the utility of AI to predict AF events prospectively and retrospectively using sinus rhythm mECG data.METHODS We trained a neural network to predict AF events from sinus rhythm mECGs obtained from users of the Alivecor KardiaMo-bile 6L device. We tested our model on sinus rhythm mECGs within & PLUSMN;0-2 days, & PLUSMN;3-7 days, and & PLUSMN;8-30 days from AF events to deter-mine the optimal screening window. Finally, we tested our model on mECGs from before an AF event to determine whether AF can be predicted prospectively.RESULTS We included 73,861 users with 267,614 mECGs (mean age 58.14 years; 35% women). Users with paroxysmal AF contributed 60.15% of mECGs. Model performance on the test set comprising control and study samples across all windows of interest showed an area under the curve (AUC) score of 0.760 (95% confidence inter-val [CI] 0.759-0.760), sensitivity of 0.703 (95% CI 0.700-0.705), specificity of 0.684 (95% CI 0.678-0.685), and accuracy of 69.4% (95% CI 0.692-0.700). Model performance was better on & PLUSMN;0-2 day samples (sensitivity 0.711; 95% CI 0.709-0.713) and worse on the & PLUSMN;8-30 day window (sensitivity 0.688; 95% CI 0.685- 0.690), with performance on the & PLUSMN;3-7 day window falling in be-tween (sensitivity 0.708; 95% CI 0.704-0.710).CONCLUSION Neural networks can predict AF using a widely scal-able and cost-effective mobile technology prospectively and retro-spectively.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [1] ARTIFICIAL INTELLIGENCE-ENABLED PREDICTION OF ATRIAL FIBRILLATION EVENTS USING MOBILE ELECTROCARDIOGRAMS
    Nguyen, Dan
    Raghunath, Ananditha
    Schram, Matthew
    Albert, Dave
    Gollakota, Shyamnath
    Shapiro, Linda
    Raghav, Arun
    Sridhar, Mahankali
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2054 - 2054
  • [2] Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
    Jin, Yeongbong
    Ko, Bonggyun
    Chang, Woojin
    Choi, Kang-Ho
    Lee, Ki Hong
    KOREAN JOURNAL OF INTERNAL MEDICINE, 2025,
  • [3] Detecting Atrial Fibrillation by Artificial Intelligence-Enabled Neuroimaging Examination
    Sharobeam, Angelos
    Shokri, Mohammad Javad
    Desai, Nandakishor
    Rao, Aravinda S.
    Kusuma, Yohanna
    Palaniswami, Marimuthu
    Davis, Stephen M.
    Yan, Bernard
    CEREBROVASCULAR DISEASES, 2025,
  • [4] Evaluating the Risk of Paroxysmal Atrial Fibrillation in Noncardioembolic Ischemic Stroke Using Artificial Intelligence-Enabled ECG Algorithm
    Han, Changho
    Kwon, Oyeon
    Chang, Mineok
    Joo, Sunghoon
    Lee, Yeha
    Lee, Jin Soo
    Hong, Ji Man
    Lee, Seong-Joon
    Yoon, Dukyong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [5] Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms
    Ryuichiro Yagi
    Shinichi Goto
    Yukihiro Himeno
    Yoshinori Katsumata
    Masahiro Hashimoto
    Calum A. MacRae
    Rahul C. Deo
    Nature Communications, 15
  • [6] Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms
    Yagi, Ryuichiro
    Goto, Shinichi
    Himeno, Yukihiro
    Katsumata, Yoshinori
    Hashimoto, Masahiro
    MacRae, Calum A.
    Deo, Rahul C.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] An artificial intelligence-enabled electrocardiogram algorithm for the prediction of left atrial low-voltage areas in persistent atrial fibrillation
    Tao, Yirao
    Zhang, Deyun
    Tan, Chen
    Wang, Yanjiang
    Shi, Liang
    Chi, Hongjie
    Geng, Shijia
    Ma, Zhimin
    Hong, Shenda
    Liu, Xing Peng
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2024, 35 (09) : 1849 - 1858
  • [8] An Artificial Intelligence-Enabled ECG Algorithm for Predicting the Risk of Recurrence in Patients with Paroxysmal Atrial Fibrillation after Catheter Ablation
    Jiang, Junrong
    Deng, Hai
    Liao, Hongtao
    Fang, Xianhong
    Zhan, Xianzhang
    Wei, Wei
    Wu, Shulin
    Xue, Yumei
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (05)
  • [9] Artificial intelligence-enabled detection of paroxysmal atrial fibrillation from normal sinus ECGs in patients with coronary microvascular dysfunction
    Ahmad, A.
    Corban, M.
    Toya, T.
    Attia, Z., I
    Noseworthy, R.
    Cohen, M. Shelly
    Lopez-Jimenez, F.
    Kapa, S.
    Friedman, P. A.
    Lerman, A.
    EUROPEAN HEART JOURNAL, 2020, 41 : 1265 - 1265
  • [10] Prediction of Atrial Fibrillation using artificial intelligence on Electrocardiograms: A systematic review
    Matias, Igor
    Garcia, Nuno
    Pirbhulal, Sandeep
    Felizardo, Virginie
    Pombo, Nuno
    Zacarias, Henriques
    Sousa, Miguel
    Zdravevski, Eftim
    COMPUTER SCIENCE REVIEW, 2021, 39