Predicting cellular responses to complex perturbations in high-throughput screens

被引:77
作者
Lotfollahi, Mohammad [1 ,2 ]
Susmelj, Anna Klimovskaia [3 ,4 ]
De Donno, Carlo [1 ,5 ]
Hetzel, Leon [1 ,6 ]
Ji, Yuge [5 ]
Ibarra, Ignacio L. [1 ]
Srivatsan, Sanjay R.
Naghipourfar, Mohsen [8 ]
Daza, Riza M. [7 ]
Martin, Beth [7 ]
Shendure, Jay [7 ,9 ,10 ,11 ]
McFaline-Figueroa, Jose L. [12 ]
Boyeau, Pierre [13 ]
Wolf, F. Alexander [1 ,15 ]
Yakubova, Nafissa [3 ]
Guennemann, Stephan [14 ]
Trapnell, Cole [7 ,10 ,11 ]
Lopez-Paz, David [2 ]
Theis, Fabian J. [1 ,2 ,5 ,6 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Ctr Munich, Inst Computat Biol, Munich, Germany
[2] Wellcome Trust Sanger Inst, Wellcome Genome Campus, Hinxton, Cambs, England
[3] Meta AI, Paris, France
[4] Swiss Data Sci Ctr, Zurich, Switzerland
[5] Tech Univ Munich, Sch Life Sci Weihenstephan, Munich, Germany
[6] Tech Univ Munich, Dept Math, Munich, Germany
[7] Univ Washington, Dept Genome Sci, Seattle, WA USA
[8] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA USA
[9] Howard Hughes Med Inst, Seattle, WA USA
[10] Brotman Baty Inst Precis Med, Seattle, WA USA
[11] Allen Discovery Ctr Cell Lineage Tracing, Seattle, WA USA
[12] Columbia Univ, Dept Biomed Engn, New York, NY USA
[13] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA USA
[14] Tech Univ Munich, Dept Comp Sci, Munich, Germany
[15] Lamin Labs, Munich, Germany
关键词
generative modeling; high-throughput screening; machine learning; perturbation prediction; single-cell transcriptomics; SEQ; CANCER; MECHANISMS; THERAPY;
D O I
10.15252/msb.202211517
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.
引用
收藏
页数:19
相关论文
共 53 条
[21]   CUT&Tag for efficient epigenomic profiling of small samples and single cells [J].
Kaya-Okur, Hatice S. ;
Wu, Steven J. ;
Codomo, Christine A. ;
Pledgers, Erica S. ;
Bryson, Terri D. ;
Henikoff, Jorja G. ;
Ahmad, Kami ;
Henikoff, Steven .
NATURE COMMUNICATIONS, 2019, 10 (1)
[22]   Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma [J].
Kim, Kyu-Tae ;
Lee, Hye Won ;
Lee, Hae-Ock ;
Song, Hye Jin ;
Jeong, Da Eun ;
Shin, Sang ;
Kim, Hyunho ;
Shin, Yoojin ;
Nam, Do-Hyun ;
Jeong, Byong Chang ;
Kirsch, David G. ;
Joo, Kyeung Min ;
Park, Woong-Yang .
GENOME BIOLOGY, 2016, 17 :80
[23]  
Landrum Greg, 2006, RDKit: open-source cheminformatics, DOI DOI 10.2307/3592822
[24]   Enhancing scientific discoveries in molecular biology with deep generative models [J].
Lopez, Romain ;
Gayoso, Adam ;
Yosef, Nir .
MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (09)
[25]   Deep generative modeling for single-cell transcriptomics [J].
Lopez, Romain ;
Regier, Jeffrey ;
Cole, Michael B. ;
Jordan, Michael I. ;
Yosef, Nir .
NATURE METHODS, 2018, 15 (12) :1053-+
[26]   Mapping single-cell data to reference atlases by transfer learning [J].
Lotfollahi, Mohammad ;
Naghipourfar, Mohsen ;
Luecken, Malte D. ;
Khajavi, Matin ;
Buettner, Maren ;
Wagenstetter, Marco ;
Avsec, Ziga ;
Gayoso, Adam ;
Yosef, Nir ;
Interlandi, Marta ;
Rybakov, Sergei ;
Misharin, Alexander, V ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2022, 40 (01) :121-+
[27]   Conditional out-of-distribution generation for unpaired data using transfer VAE [J].
Lotfollahi, Mohammad ;
Naghipourfar, Mohsen ;
Theis, Fabian J. ;
Wolf, F. Alexander .
BIOINFORMATICS, 2020, 36 :I610-I617
[28]   scGen predicts single-cell perturbation responses [J].
Lotfollahi, Mohammad ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (08) :715-+
[29]  
Martin Beth K., 2021, arXiv, DOI [10.48550/arXiv.2110.15400, DOI 10.48550/ARXIV.2110.15400]
[30]   Deep Learning in Chemistry [J].
Mater, Adam C. ;
Coote, Michelle L. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (06) :2545-2559