Enhanced Electrochemical Performance of Rare-Earth Metal-Ion- Doped Nanocrystalline Li4Ti5O12 Electrodes in High-Power Li-Ion Batteries

被引:24
作者
Lakshmi-Narayana, A. [1 ,2 ]
Dhananjaya, Merum [3 ]
Julien, Christian M. [4 ]
Joo, Sang Woo [3 ]
Ramana, C., V [1 ,2 ]
机构
[1] Univ Texas El Paso, Ctr Adv Mat Res CMR, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Aerosp & Mech Engn, El Paso, TX 79968 USA
[3] Yeungnam Univ, Sch Mech & IT Engn, Gyongsan 38541, South Korea
[4] Sorbonne Univ, Inst Mineral Phys Materiaux & Cosmochimie IMPMC, CNRS UMR, F-75252 Paris, France
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
rare-earth metal; doping; Li-ion batteries; high-rate performance; LONG CYCLE-LIFE; ANODE MATERIAL; LITHIUM-TITANATE; NEGATIVE-ELECTRODE; RATE-CAPABILITY; NANOSHEETS; STABILITY; CE; COMPOSITES; DIFFUSION;
D O I
10.1021/acsami.3c00175
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A comprehensive and comparative exploration research performed, aiming to elucidate the fundamental mechanisms of rare-earth (RE) metal-ion doping into Li4Ti5O12 (LTO), reveals the enhanced electrochemical performance of the nanocrystalline RE-LTO electrodes in high-power Li-ion batteries. Pristi ne Li4Ti5O12 (LTO) and rare-earth metal-doped Li4-x/3Ti5-2x/3LnxO12 (RE-LTO with RE = Dy, Ce, Nd, Sm, and Eu; x approximate to 0.1) nanocrystalline anode materials were synthesized using a simple mechanochemical method and subsequent calcination at 850 degrees C. The X-ray diffraction (XRD) patterns of pristine and RE-LTO samples exhibit predominant (111) orientation along with other characteristic peaks corresponding to cubic spinel lattice. No evidence of RE-doping-induced changes was seen in the crystal structure and phase. The average crystallite size for pristine and RE-LTO samples varies in the range of 50-40 nm, confirming the formation of nanoscale crystalline materials and revealing the good efficiency of the ball-milling-assisted process adopted to synthesize nanoscale particles. Raman spectroscopic analyses of the chemical bonding indicate and further validate the phase structural quality in addition to corroborating with XRD data for the cubic spinel structure formation. Transmission electron microscopy (TEM) reveals that both pristine and RE-LTO particles have a similar cubic shape, but RE-LTO particles are better interconnected, which provide a high specific surface area for enhanced Li+-ion storage. The detailed electrochemical characterization confirms that the RE-LTO electrodes constitute promising anode materials for high-power Li-ion batteries. The RE-LTO electrodes deliver better discharge capacities (in the range of 172-198 mAh g-1 at 1C rate) than virgin LTO (168 mAh g-1). Among them, Eu-LTO provides the best discharge capacity of 198 mAh g-1 at a 1C rate. When cycled at a high current rate of 50C, all RE-LTO electrodes show nearly 70% of their initial discharge capacities, resulting in higher rate capability than virgin LTO (63%). The results discussed in this work unfold the fundamental mechanisms of RE doping into LTO and demonstrate the enhanced electrochemical performance derived via chemical composition tailoring in RELTO compounds for application in high-power Li-ion batteries.
引用
收藏
页码:20925 / 20945
页数:21
相关论文
共 72 条
  • [51] Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS
    Tang, Kun
    Yu, Xiqian
    Sun, Jinpeng
    Li, Hong
    Huang, Xuejie
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (13) : 4869 - 4875
  • [52] Toward Dendrite-Free Metallic Lithium Anodes: From Structural Design to Optimal Electrochemical Diffusion Kinetics
    Wang, Jian
    Li, Linge
    Hu, Huimin
    Hu, Hongfei
    Guan, Qinghua
    Huang, Min
    Jia, Lujie
    Adenusi, Henry
    Tian, Kun, V
    Zhang, Jing
    Passerini, Stefano
    Lin, Hongzhen
    [J]. ACS NANO, 2022, 16 (11) : 17729 - 17760
  • [53] Wang L., CHEM MATER
  • [54] Revealing the Phase-Transition Dynamics and Mechanism in a Spinel Li4Ti5O12 Anode Material through in Situ Electron Microscopy
    Wang, Longfei
    Zhang, Zhi
    Cheng, Yongfa
    Zhang, Yanan
    Liu, Weifeng
    Su, Jun
    Liu, Nishuang
    Gao, Yihua
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (18) : 20874 - 20881
  • [55] Wei Z., 2022, ADV MATER, V35
  • [56] Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere
    Wolfenstine, J
    Lee, U
    Allen, JL
    [J]. JOURNAL OF POWER SOURCES, 2006, 154 (01) : 287 - 289
  • [57] Highly-crystalline lanthanide doped and carbon encapsulated Li4Ti5O12 nanosheets as an anode material for sodium ion batteries with superior electrochemical performance
    Wu, Z. L.
    Xu, G. B.
    Wei, X. L.
    Yang, L. W.
    [J]. ELECTROCHIMICA ACTA, 2016, 207 : 275 - 283
  • [58] TinO2n-1/MXene Hierarchical Bifunctional Catalyst Anchored on Graphene Aerogel toward Flexible and High-Energy Li-S Batteries
    Xia, Jun
    Gao, Runhua
    Yang, Yang
    Tao, Zheng
    Han, Zhiyuan
    Zhang, Shichao
    Xing, Yalan
    Yang, Puheng
    Lu, Xia
    Zhou, Guangmin
    [J]. ACS NANO, 2022, 16 (11) : 19133 - 19144
  • [59] Xiaobing L., 2013, MICROSC MICROANAL, V19, P1136, DOI [10.1017/S1431927613007678, DOI 10.1017/S1431927613007678]
  • [60] Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage
    Xu, G. B.
    Yang, L. W.
    Wei, X. L.
    Ding, J. W.
    Zhong, J. X.
    Chu, P. K.
    [J]. JOURNAL OF POWER SOURCES, 2015, 295 : 305 - 313