Machine learning techniques in magnetic levitation problems

被引:0
作者
Arrayas, Manuel [1 ]
Trueba, Jose L. [1 ]
Uriarte, Carlos [1 ]
机构
[1] Univ Rey Juan Carlos, Area Electromagnetismo, Tulipdn S-N, Madrid 28933, Spain
关键词
Magnetic levitation; Machine learning; Stability regions;
D O I
10.1016/j.chaos.2022.113043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a method for calculating the stability region of a perfect diamagnet levitated in a magnetic field created by a circular current loop making use of the machine learning techniques. As an application we compute stability regions, points of stable equilibrium and stable oscillatory motions in two chip-based superconducting trap architectures used to levitate superconducting particles. Our procedure is an alternative to a full numerical scheme based on finite element methods which are expensive to implement for optimizing experimental parameters.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Machine learning techniques for mitoses classification
    Nofallah, Shima
    Mehta, Sachin
    Mercan, Ezgi
    Knezevich, Stevan
    May, Caitlin J.
    Weaver, Donald
    Witten, Daniela
    Elmore, Joann G.
    Shapiro, Linda
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 87
  • [22] Operations Research, Machine Learning, and Integrated Techniques for Decision Problems in the Seaside Area of Container Terminals
    Haoqi Xie
    Daniela Ambrosino
    [J]. Operations Research Forum, 6 (2)
  • [23] Machine learning techniques for sentiment analysis
    Lopez, Jessica Olivares
    Lopez, Abraham Sanchez
    Velazquez, Rogelio Gonzalez
    Diaz, Maria del Carmen Santiago
    Vazquez, Ana Claudia Zenteno
    [J]. INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2024, 15 (05): : 6 - 16
  • [24] Machine Learning in Magnetic Materials
    Katsikas, Georgios
    Sarafidis, Charalampos
    Kioseoglou, Joseph
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021, 258 (08):
  • [25] LEARNING DESIGN CONCEPTS USING MACHINE LEARNING TECHNIQUES
    MAHER, ML
    LI, H
    [J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 1994, 8 (02): : 95 - 111
  • [26] Learning Process Analysis using Machine Learning Techniques
    Fernandez-Robles, Laura
    Alaiz-Moreton, Hector
    Alfonso-Cendon, Javier
    Castejon-Limas, Manuel
    Panizo-Alonso, Luis
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2018, 34 (03) : 981 - 989
  • [27] Optimization problems for machine learning: A survey
    Gambella, Claudio
    Ghaddar, Bissan
    Naoum-Sawaya, Joe
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (03) : 807 - 828
  • [28] Solving System Problems with Machine Learning
    Stoica, Ion
    [J]. STUDIES IN INFORMATICS AND CONTROL, 2019, 28 (02): : 119 - 132
  • [29] Engineering problems in machine learning systems
    Hiroshi Kuwajima
    Hirotoshi Yasuoka
    Toshihiro Nakae
    [J]. Machine Learning, 2020, 109 : 1103 - 1126
  • [30] Machine Learning (In) Security: A Stream of Problems
    Ceschin, Fabricio
    Botacin, Marcus
    Bifet, Albert
    Pfahringer, Bernhard
    Oliveira, Luiz S.
    Gomes, Heitor Murilo
    Gregio, Andre
    [J]. DIGITAL THREATS: RESEARCH AND PRACTICE, 2024, 5 (01):