Algebraic approximation of Cohen-Macaulay algebras

被引:0
|
作者
Patel, Aftab [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cohen-Macaulay; Gorenstein; Algebraic power series; Hilbert-Samuel function; Flatness; Special fibre; Free resolution; Approximation; Betti number; STANDARD BASES; RINGS;
D O I
10.1016/j.jalgebra.2023.02.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows that Cohen-Macaulay algebras can be algebraically approximated in such a way that their Cohen-Macaulayness and minimal Betti numbers are preserved. This is achieved by showing that finitely generated modules over power series rings can be algebraically approximated in a manner that preserves their diagrams of initial exponents and their minimal Betti numbers. These results are also applied to obtain an approximation result for flat homomorphisms from rings of power series to Cohen-Macaulay algebras.Crown Copyright (c) 2023 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 81
页数:16
相关论文
共 50 条
  • [21] Cohen-Macaulay Property of Feynman Integrals
    Tellander, Felix
    Helmer, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (02) : 1021 - 1037
  • [22] Systems of parameters and the Cohen-Macaulay property
    Herzog, Juergen
    Moradi, Somayeh
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (04) : 1261 - 1277
  • [23] Chern coefficients and Cohen-Macaulay rings
    Hoang Le Truong
    JOURNAL OF ALGEBRA, 2017, 490 : 316 - 329
  • [24] MINIMAL COHEN-MACAULAY SIMPLICIAL COMPLEXES
    Dao, Hailong
    Doolittle, Joseph
    Lyle, Justin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1602 - 1608
  • [25] Generic Cohen-Macaulay Monomial Ideals
    Abdul Salam Jarrah
    Reinhard Laubenbacher
    Annals of Combinatorics, 2004, 8 (1) : 45 - 61
  • [26] ON SEQUENTIALLY COHEN-MACAULAY COMPLEXES AND POSETS
    Bjorner, Anders
    Wachs, Michelle
    Welker, Volkmar
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 169 (01) : 295 - 316
  • [27] On virtually Cohen-Macaulay simplicial complexes
    Kenshur, Nathan
    Lin, Feiyang
    McNally, Sean
    Xu, Zixuan
    Yu, Teresa
    JOURNAL OF ALGEBRA, 2023, 631 : 120 - 135
  • [28] ON THE CANONICAL IDEALS OF ONE-DIMENSIONAL COHEN-MACAULAY LOCAL RINGS
    Elias, Juan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 77 - 90
  • [29] A non-partitionable Cohen-Macaulay simplicial complex
    Duval, Art M.
    Goeckner, Bennet
    Klivans, Caroline J.
    Martin, Jeremy L.
    ADVANCES IN MATHEMATICS, 2016, 299 : 381 - 395
  • [30] On Cohen-Macaulay non-prime collections of cells
    Cisto, Carmelo
    Jahangir, Rizwan
    Navarra, Francesco
    COMMUNICATIONS IN ALGEBRA, 2025,