New Constructions of Optimal Optical Orthogonal Codes Based on Partitionable Sets and Almost Partitionable Sets

被引:0
|
作者
Wang, Zijing [1 ]
Kong, Hairong [1 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
关键词
Codes; Additives; Optical design; Multiaccess communication; Indexes; Upper bound; Quality of service; Cyclic packing; optical orthogonal code; partitionable set; almost partitionable set; variable-weight optical orthogonal code; MULTIPLE-ACCESS TECHNIQUES; FIBER NETWORKS; SPECTRUM;
D O I
10.1109/TIT.2022.3177690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Variable-weight optical orthogonal codes (OOCs) were introduced by Yang for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, partitionable sets and almost partitionable sets are used to construct variable-weight OOCs. Four new recursive constructions for optimal cyclic packing are presented. Consequently, new infinite classes of optimal (v,W,1,Q)-OOCs are obtained.
引用
收藏
页码:2355 / 2363
页数:9
相关论文
共 50 条
  • [1] Partitionable sets, almost partitionable sets, and their applications
    Chang, Yanxun
    Costa, Simone
    Feng, Tao
    Wang, Xiaomiao
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (11) : 783 - 813
  • [2] A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
    Ruiz, Hamilton M.
    Delgado, Luis M.
    Trujillo, Carlos A.
    IEEE ACCESS, 2020, 8 : 100749 - 100753
  • [3] Constructions of Optimal Variable-Weight Optical Orthogonal Codes
    Zhao, Hengming
    Wu, Dianhua
    Fan, Pingzhi
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (04) : 274 - 291
  • [4] Partitionable sets and cyclic BSECs with block size four
    Zhang, Jing
    Chang, Yanxun
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (06) : 1974 - 1979
  • [5] New Constructions of Asymptotically Optimal Optical Orthogonal Codes With λ=1
    Chung, Jin-Ho
    Yang, Kyeongcheol
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [6] Optical orthogonal codes: Their bounds and new optimal constructions
    Fuji-Hara, R
    Miao, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) : 2396 - 2406
  • [7] Constructions for optimal optical orthogonal codes
    Chang, YX
    Miao, Y
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 127 - 139
  • [8] General Constructions of Optimal Variable-Weight Optical Orthogonal Codes
    Jiang, Jing
    Wu, Dianhua
    Fan, Pingzhi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4488 - 4496
  • [9] n-dimensional optical orthogonal codes, bounds and optimal constructions
    Alderson, T. L.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (05) : 373 - 386
  • [10] GEOMETRIC CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Alderson, T. L.
    Mellinger, K. E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (04) : 451 - 467