Low-Rank Tensor Based Proximity Learning for Multi-View Clustering

被引:68
|
作者
Chen, Man-Sheng [1 ,2 ,3 ]
Wang, Chang-Dong [1 ,2 ,3 ]
Lai, Jian-Huang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Beijing 100816, Peoples R China
关键词
Tensors; Correlation; Clustering methods; Kernel; Data structures; Sparse matrices; Semantics; Multi-view clustering; low-rank tensor representation; consensus indicator; adaptive confidences; GRAPH;
D O I
10.1109/TKDE.2022.3151861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods.
引用
收藏
页码:5076 / 5090
页数:15
相关论文
共 50 条
  • [41] Fast Disentangled Slim Tensor Learning for Multi-View Clustering
    Xu, Deng
    Zhang, Chao
    Li, Zechao
    Chen, Chunlin
    Li, Huaxiong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1254 - 1265
  • [42] Deep low-rank subspace ensemble for multi-view clustering
    Xue, Zhe
    Du, Junping
    Du, Dawei
    Lyu, Siwei
    INFORMATION SCIENCES, 2019, 482 : 210 - 227
  • [43] Hyper-Laplacian regularized multi-view subspace clustering with low-rank tensor constraint
    Lu, Gui-Fu
    Yu, Qin-Ru
    Wang, Yong
    Tang, Ganyi
    NEURAL NETWORKS, 2020, 125 : 214 - 223
  • [44] Multi-view Ensemble Clustering via Low-rank and Sparse Decomposition: From Matrix to Tensor
    Zhang, Xuanqi
    Shen, Qiangqiang
    Chen, Yongyong
    Zhang, Guokai
    Hua, Zhongyun
    Su, Jingyong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (07)
  • [45] Low-Rank Common Subspace for Multi-view Learning
    Ding, Zhengming
    Fu, Yun
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 110 - 119
  • [46] Flexible anchor-based multi-view clustering with low-rank decomposition
    Zhang, Zheng
    Huang, Yufang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 3193 - 3209
  • [47] Multi-view clustering with Laplacian rank constraint based on symmetric and nonnegative low-rank representation
    Gao, Chiwei
    Xu, Ziwei
    Chen, Xiuhong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 236
  • [48] Multi-view Proximity Learning for Clustering
    Lin, Kun-Yu
    Huang, Ling
    Wang, Chang-Dong
    Chao, Hong-Yang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2018), PT II, 2018, 10828 : 407 - 423
  • [49] Nonconvex low-rank tensor approximation with graph and consistent regularizations for multi-view subspace learning
    Pan, Baicheng
    Li, Chuandong
    Che, Hangjun
    NEURAL NETWORKS, 2023, 161 : 638 - 658
  • [50] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543