Pd Nanoparticles/Au@SiO2 Core-Shell Nanostructures for Hydrogen Sensing

被引:4
作者
Cibaka-Ndaya, Cynthia [1 ]
Javahiraly, Nicolas [2 ]
Roiban, Lucian [3 ]
Epicier, Thierry [3 ,4 ]
Boubiche, Nacer [2 ]
Valette, Sabastien [5 ]
Saury, Antoine [1 ]
Brioude, Arnaud [1 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Lab Multimat riaux & Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France
[2] Univ Strasbourg, Lab Bioelectrochemistry & Spect, UMR 7140, Chim matiere complexe, F-67081 Strasbourg, France
[3] Univ Lyon, Univ Claude Bernard Lyon 1, INSA Lyon, CNRS,MATEIS,UMR 5510, Villeurbanne, France
[4] Univ Lyon, Univ Claude bernard Lyon 1, Inst Rech catalyse & environnment Lyon, IRCELYON,UMR CNRS5256, 2 Ave Albert Einstein, F-69626 Villeurbanne, France
[5] Univ Lyon, Univ Claude Bernard Lyon 1, Univ Jean Monnet St Etienne,INSA Lyon, INSERM U1294,CNRS,CREATIS,UMR 5220, F-69621 Villeurbanne, France
关键词
heterostructures; Pd nanoparticles; hydrogen sensing; DDA simulation; electron tomography; GOLD NANOSTRUCTURES; OPTICAL-PROPERTIES; ABSORPTION; NANORODS; CATALYST; SILICA; GROWTH; SIZE;
D O I
10.1021/acsanm.2c04288
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, a multistep synthesis method was implemented to prepare nanoscale core@shell spherical heterostructures for H2 optical detection. The resulting nanoheterostructures are built with gold cores and silica shells further coated by a thin layer of spherical palladium nanoparticles. Samples with various thicknesses of silica and densities of palladium nanoparticles were synthesized and characterized by transmission electron microscopy. In particular, the three-dimensional core@shell configuration was confirmed by electron tomography. The optical properties of the obtained nanostructures were first analyzed by optical absorbance measurements, and their potential use for H2 detection was evaluated by simulations based on the discrete dipole approximation method. Thus, the optical response of the studied nanostructures is investigated theoretically when the Pd layer is hydrogenated, showing the great sensitivity achievable with these nanostructures.
引用
收藏
页码:899 / 907
页数:9
相关论文
共 40 条
[1]   Computational electromagnetics in plasmonic nanostructures [J].
Amirjani, Amirmostafa ;
Sadrnezhaad, S. K. .
JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (31) :9791-9819
[2]   Au-Pd core-shell nanoparticle film for optical detection of hydrogen gas [J].
Boubiche, Nacer ;
Cibaka-Ndaya, Cynthia ;
Brioude, Arnaud ;
Javahiraly, Nicolas .
AIP ADVANCES, 2020, 10 (10)
[3]   Optical properties of gold nanorods: DDA simulations supported by experiments [J].
Brioude, A ;
Jiang, XC ;
Pileni, MP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (27) :13138-13142
[4]  
Cao BY, 2007, PROG NAT SCI-MATER, V17, P212
[5]   Gold Nanoparticles Supported on Alumina as a Catalyst for Surface Plasmon-Enhanced Selective Reductions of Nitrobenzene [J].
Chaiseeda, Kittichai ;
Nishimura, Shun ;
Ebitani, Kohki .
ACS OMEGA, 2017, 2 (10) :7066-7070
[6]   Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene [J].
Chen, Hao ;
Chen, Zihao ;
Yang, Hua ;
Wen, Lianghua ;
Yi, Zao ;
Zhou, Zigang ;
Dai, Bo ;
Zhang, Jianguo ;
Wu, Xianwen ;
Wu, Pinghui .
RSC ADVANCES, 2022, 12 (13) :7821-7829
[7]   Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications [J].
Coviello, Vito ;
Forrer, Daniel ;
Amendola, Vincenzo .
CHEMPHYSCHEM, 2022, 23 (21)
[8]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[9]   A general method to coat colloidal particles with silica [J].
Graf, C ;
Vossen, DLJ ;
Imhof, A ;
van Blaaderen, A .
LANGMUIR, 2003, 19 (17) :6693-6700
[10]   Gold nanostructures: engineering their plasmonic properties for biomedical applications [J].
Hu, Min ;
Chen, Jingyi ;
Li, Zhi-Yuan ;
Au, Leslie ;
Hartland, Gregory V. ;
Li, Xingde ;
Marquez, Manuel ;
Xia, Younan .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (11) :1084-1094