Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA

被引:4
作者
Sani, Asrul [1 ]
Abapihi, Bahriddin [2 ]
Mukhsar [2 ]
Tosepu, Ramadhan [3 ]
Usman, Ida [4 ]
Rahman, Gusti Arviani [5 ]
机构
[1] Halu Oleo Univ, Fac Math & Sci, Math Dept, BTN Unhalu Blok 5 40 Andunohu, Kendari 93232, Southeast Sulaw, Indonesia
[2] Halu Oleo Univ, Fac Math & Sci, Stat Dept, Kendari, Indonesia
[3] Halu Oleo Univ, Fac Publ Hlth, Publ Hlth Dept, Kendari, Indonesia
[4] Halu Oleo Univ, Fac Math & Sci, Phys Dept, Kendari, Indonesia
[5] Politekn Indotec Kendari, Informat Engn Dept, Kendari, Indonesia
关键词
Single and multiple-trend; spatio-temporal; Bayesian; dengue; INLA; SPACE-TIME VARIATION; INFERENCE;
D O I
10.1080/02286203.2022.2139108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding spatio-temporal patterns of communicable diseases and their dependency structure is crucial for assessing the potential mitigation and control measures. This paper presents various Bayesian models of dengue and studies the models with Integrated Nested Laplace Approximation (INLA) approach. Several structure models, as the combination of two temporal models of Autoregressive (AR) and Random Walk (RW), and three likelihoods of Gaussian, Poisson and Negative Binomial, are developed and utilised. The study further formulates a spatial model and four types of spatio-temporal models, as the combination of spatial and temporal random effects. All proposed models are applied to the dengue counts in the small city of Kendari, Indonesia. Based on the DIC and WAIC values, the level counts of dengue for each county are well described by AR(1)-Poisson. The best performances of the single-trend model and the multiple-trend model are achieved with AR(1)-Negative Binomial and AR(2)-Poisson, respectively. The multiple-trend model performs better than the single-trend model. Both spatial and spatiotemporal models show a significant spatial and temporal impact on the area-specific relative risk. The spatio-temporal model of Type I performs better than the other types on the dengue dataset, and followed by Type IV as the second best model.
引用
收藏
页码:939 / 951
页数:13
相关论文
共 33 条
[1]  
Aswi A, 2019, EPIDEMIOL INFECT, V147, DOI [10.1017/s0950268818002807, 10.1017/S0950268818002807]
[2]   Evaluating the impact of a small number of areas on spatial estimation [J].
Aswi, Aswi ;
Cramb, Susanna ;
Duncan, Earl ;
Mengersen, Kerrie .
INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2020, 19 (01)
[3]  
Banerjee S., 2015, HIERARCHICAL MODELIN
[4]   BAYESIAN-ANALYSIS OF SPACE-TIME VARIATION IN DISEASE RISK [J].
BERNARDINELLI, L ;
CLAYTON, D ;
PASCUTTO, C ;
MONTOMOLI, C ;
GHISLANDI, M ;
SONGINI, M .
STATISTICS IN MEDICINE, 1995, 14 (21-22) :2433-2443
[5]   BAYESIAN IMAGE-RESTORATION, WITH 2 APPLICATIONS IN SPATIAL STATISTICS [J].
BESAG, J ;
YORK, J ;
MOLLIE, A .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) :1-20
[6]  
Blangiardo M., 2015, SPAT SPAT BAYES MOD, DOI [DOI 10.1002/9781118950203, 10.1002/9781118950203]
[7]  
Blangiardo M, 2013, SPAT SPATIO-TEMPORAL, V7, P39, DOI [10.1016/j.sste.2013.07.003, 10.1016/j.sste.2012.12.001]
[8]   Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping [J].
Carroll, R. ;
Lawson, A. B. ;
Faes, C. ;
Kirby, R. S. ;
Aregay, M. ;
Watjou, K. .
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2015, 14-15 :45-54
[9]  
De Smedt T., 2015, Archives of Public Health, V73, pO2, DOI [DOI 10.1186/2049-3258-73-S1-O2, 10.1186/2049-3258-73-s1-o2]
[10]   Hierarchical Bayesian modelling for spatial analysis of the number of avalanche occurrences at the scale of the township [J].
Eckert, N. ;
Parent, E. ;
Belanger, L. ;
Garcia, S. .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2007, 50 (1-3) :97-112