Parametric analysis of CO2 hydrogenation via Fischer-Tropsch synthesis: A review based on machine learning for quantitative assessment

被引:4
|
作者
Hu, Jing [1 ]
Wang, Yixao [2 ]
Zhang, Xiyue [3 ]
Wang, Yunshan [4 ]
Yang, Gang [4 ,8 ]
Shi, Lufang [5 ]
Sun, Yong [6 ,7 ]
机构
[1] Stanford Univ, Doerr Sch Sustainabil, Stanford, CA 94305 USA
[2] Univ Coll London UCL, Inst Mat Discovery, London WC1H 0AJ, England
[3] Imperial Coll London, Dept Civil & Environm Engn, London SW7 2AZ, England
[4] Chinese Acad Sci, Natl Engn Lab Hydromet Cleaner Prod Technol, Inst Proc Engn, Beijing 100190, Peoples R China
[5] Each Energy Australia, James Ruse Dr, Sydney, NSW 2116, Australia
[6] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Joondalup, WA 6027, Australia
[7] Univ Nottingham Ningbo China, Key Lab More Elect Aircraft Technol Zhejiang Prov, Ningbo 315100, Peoples R China
[8] Chinese Acad Sci, Inst Proc Engn, Beijing, Peoples R China
关键词
Artificial neural networks; CO; 2; hydrogenation; Fischer-Tropsch synthesis; Parametric analysis; Review; IRON-BASED CATALYST; RESPONSE-SURFACE METHODOLOGY; HYBRID EXPERT SYSTEM; LIGHT OLEFINS; CRYSTALLITE SIZE; FE CATALYSTS; MN PROMOTER; DATA-DRIVEN; PERFORMANCE; SELECTIVITY;
D O I
10.1016/j.ijhydene.2024.02.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review focuses on the parametric impacts upon conversion and selectivity during CO2 hydrogenation via Fischer-Tropsch (FT) synthesis using iron-based catalyst to provide quantitative evaluation. Using all collected data from reported literatures as training dataset via artificial neural networks (ANNs) in TensorFlow, three categorized parameters (namely: operational, catalyst informatic and mass transfer) were deployed to assess their impacts upon conversions (CO2) and selectivity. The lump kinetic power expressions among literature reports were compared, and the best fit model is the one that was proposed by this work without arbitrarily assuming power values of individual partial pressure (CO and H2). More than five sets of binary parameters were systematically investigated to find out corresponding evolving patterns in conversion and selectivity. Aided by machine learning, tailoring product distributions based on specific selectivity or conversion for optimization purpose is practically achievable by deploying the predictions generated from ANNs in this work.
引用
收藏
页码:1023 / 1041
页数:19
相关论文
共 50 条
  • [1] CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts
    Visconti, Carlo Giorgio
    Martinelli, Michela
    Falbo, Leonardo
    Fratalocchi, Laura
    Lietti, Luca
    CATALYSIS TODAY, 2016, 277 : 161 - 170
  • [2] CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts
    Zhang, YQ
    Jacobs, G
    Sparks, DE
    Dry, ME
    Davis, BH
    CATALYSIS TODAY, 2002, 71 (3-4) : 411 - 418
  • [3] Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts
    Liu, Renjie
    Ma, Zhiqiang
    Sears, Jeffrey D.
    Juneau, Mitchell
    Neidig, Michael L.
    Porosoff, Marc D.
    JOURNAL OF CO2 UTILIZATION, 2020, 41
  • [4] Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols
    Zeng, Zhuang
    Li, Kezhi
    Yuan, Zhiwei
    Du, Jintao
    Li, Zhuoshi
    Wang, Yue
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (06): : 3061 - 3079
  • [5] Fischer-Tropsch synthesis on a model Co/SiO2 catalyst
    Yan, Zhen
    Wang, Zhoujun
    Bukur, Dragomir B.
    Goodman, D. Wayne
    JOURNAL OF CATALYSIS, 2009, 268 (02) : 196 - 200
  • [6] Fischer-Tropsch synthesis to α-Olefins with low CO2 selectivity on a Co2C catalyst
    Liu, Yiwen
    He, Chengyang
    Jiang, Xingmao
    Zhang, Rui
    Liu, Xinying
    Hildebrandt, Diane
    Lu, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [7] Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas
    Visconti, Carlo Giorgio
    Lietti, Luca
    Tronconi, Enrico
    Forzatti, Pio
    Zennaro, Roberto
    Finocchio, Elisabetta
    APPLIED CATALYSIS A-GENERAL, 2009, 355 (1-2) : 61 - 68
  • [8] A Review of Fischer-Tropsch Synthesis on the Cobalt Based Catalysts
    Arsalanfar, M.
    Mirzaei, A. A.
    Bozorgzadeh, H. R.
    Samimi, A.
    PHYSICAL CHEMISTRY RESEARCH, 2014, 2 (02): : 179 - 201
  • [9] Catalytic performance of Iron-based catalyst in Fischer-Tropsch synthesis using CO2 containing syngas
    Sirikulbodee, Paphatsara
    Ratana, Tanakorn
    Sornchamni, Thana
    Phongaksorn, Monrudee
    Tungkamani, Sabaithip
    2017 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2017, 138 : 998 - 1003
  • [10] The effect of CO2 on a cobalt-based catalyst for low temperature Fischer-Tropsch synthesis
    Yao, Y.
    Liu, X.
    Hildebrandt, D.
    Glasser, D.
    CHEMICAL ENGINEERING JOURNAL, 2012, 193 : 318 - 327