Global Solutions with Asymptotic Self-Similar Behaviour for the Cubic Wave Equation

被引:0
作者
Duyckaerts, Thomas [1 ]
Negro, Giuseppe [2 ]
机构
[1] Univ Sorbonne Paris Nord, Inst Galilee, LAGA, UMR 7539, 99 Ave Jean Baptiste Clement, F-93430 Villetaneuse, France
[2] Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
CRITICAL SOBOLEV NORM; BLOW-UP PROFILE; RADIAL SOLUTIONS; UNIVERSALITY; SCATTERING; EXISTENCE;
D O I
10.1007/s00220-024-04962-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a two-parameter family of explicit solutions to the cubic wave equation on R1+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>{1+3}$$\end{document}. Depending on the value of the parameters, these solutions either scatter to linear, blow-up in finite time, or exhibit a new type of threshold behaviour which we characterize precisely.
引用
收藏
页数:43
相关论文
共 38 条
[1]  
Alinhac S., 1995, Blowup for Nonlinear Hyperbolic Equations, DOI [10.1007/978-1-4612-2578-2, DOI 10.1007/978-1-4612-2578-2]
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]   On blowup for semilinear wave equations with a focusing nonlinearity [J].
Bizon, P ;
Chmaj, T ;
Tabor, Z .
NONLINEARITY, 2004, 17 (06) :2187-2201
[4]   Self-similar solutions of the cubic wave equation [J].
Bizon, P. ;
Breitenlohner, P. ;
Maison, D. ;
Wasserman, A. .
NONLINEARITY, 2010, 23 (02) :225-236
[5]   Self-similar solutions of semilinear wave equations with a focusing nonlinearity [J].
Bizon, Piotr ;
Maison, Dieter ;
Wasserman, Arthur .
NONLINEARITY, 2007, 20 (09) :2061-2074
[6]   Universality of global dynamics for the cubic wave equation [J].
Bizon, Piotr ;
Zenginoglu, Anil .
NONLINEARITY, 2009, 22 (10) :2473-2485
[7]   On classification of non-radiative solutions for various energy-critical wave equations [J].
Collot, Charles ;
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
ADVANCES IN MATHEMATICS, 2023, 434
[8]   ON BLOWUP FOR THE SUPERCRITICAL QUADRATIC WAVE EQUATION [J].
Csobo, Elek ;
Glogic, Irfan ;
Schoerkhuber, Birgit .
ANALYSIS & PDE, 2024, 17 (02) :617-680
[9]   SCATTERING FOR THE RADIAL 3D CUBIC WAVE EQUATION [J].
Dodson, Benjamin ;
Lawrie, Andrew .
ANALYSIS & PDE, 2015, 8 (02) :467-497
[10]   Stable blowup for wave equations in odd space dimensions [J].
Donninger, Roland ;
Sehoerkhuber, Birgit .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (05) :1181-1213