Application of Deep Learning in Cancer Prognosis Prediction Model
被引:0
|
作者:
Zhang, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
Key Lab Med Phys Changzhou, Changzhou, Peoples R ChinaNanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Zhang, Heng
[1
,2
,3
,4
]
Xi, Qianyi
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
Key Lab Med Phys Changzhou, Changzhou, Peoples R China
Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R ChinaNanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Xi, Qianyi
[1
,2
,3
,4
,5
]
Zhang, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
Key Lab Med Phys Changzhou, Changzhou, Peoples R China
Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R ChinaNanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Zhang, Fan
[1
,2
,3
,4
,5
]
Li, Qixuan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
Key Lab Med Phys Changzhou, Changzhou, Peoples R China
Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R ChinaNanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Li, Qixuan
[1
,2
,3
,4
,5
]
Jiao, Zhuqing
论文数: 0引用数: 0
h-index: 0
机构:
Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R ChinaNanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Jiao, Zhuqing
[5
]
Ni, Xinye
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
Key Lab Med Phys Changzhou, Changzhou, Peoples R ChinaNanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
Ni, Xinye
[1
,2
,3
,4
]
机构:
[1] Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
[2] Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
[3] Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
[4] Key Lab Med Phys Changzhou, Changzhou, Peoples R China
[5] Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R China
deep learning;
artificial intelligence;
cancer prognosis prediction;
cancer prognostic model;
D O I:
暂无
中图分类号:
R73 [肿瘤学];
学科分类号:
100214 ;
摘要:
As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Cho, Cristina
Jeong, Yeojin
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Grad Sch Publ Hlth, Genome & Hlth Big Data Lab, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Jeong, Yeojin
Kim, Ji-Eon
论文数: 0引用数: 0
h-index: 0
机构:
Wonkwang Univ, Wonkwang Univ Hosp, Med Res Convergence Ctr, Iksan, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Kim, Ji-Eon
Lee, Jonghyun
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Lee, Jonghyun
Kim, Namkug
论文数: 0引用数: 0
h-index: 0
机构:Catholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Kim, Namkug
论文数: 引用数:
h-index:
机构:
Jung, Jiyoon
Pyo, Ju Yeon
论文数: 0引用数: 0
h-index: 0
机构:Catholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Pyo, Ju Yeon
Song, Jisun
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Song, Jisun
Jung, Woon Yong
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Coll Med, Guri Hosp, Guri, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Jung, Woon Yong
论文数: 引用数:
h-index:
机构:
Lee, Yoo Jin
Moon, Kyoung Min
论文数: 0引用数: 0
h-index: 0
机构:
Gangneung Asan Hosp, Kangnung, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Cho, Cristina
Jeong, Yeojin
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Grad Sch Publ Hlth, Genome & Hlth Big Data Lab, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Jeong, Yeojin
Kim, Ji-Eon
论文数: 0引用数: 0
h-index: 0
机构:
Wonkwang Univ, Wonkwang Univ Hosp, Med Res Convergence Ctr, Iksan, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Kim, Ji-Eon
Lee, Jonghyun
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Lee, Jonghyun
Kim, Namkug
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Seoul, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Kim, Namkug
论文数: 引用数:
h-index:
机构:
Jung, Jiyoon
Pyo, Ju Yeon
论文数: 0引用数: 0
h-index: 0
机构:
Seogu, Incheon Metropolitan Cit, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Pyo, Ju Yeon
Song, Jisun
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Song, Jisun
Jung, Woon Yong
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Guri Hosp, Coll Med, Guri, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea
Jung, Woon Yong
论文数: 引用数:
h-index:
机构:
Lee, Yoo Jin
Moon, Kyoung Min
论文数: 0引用数: 0
h-index: 0
机构:
Gangneung Asan Hosp, Kangnung, South KoreaCatholic Kwandong Univ, Coll Med, Int St Marys Hosp, Incheon, South Korea