Application of Deep Learning in Cancer Prognosis Prediction Model

被引:0
作者
Zhang, Heng [1 ,2 ,3 ,4 ]
Xi, Qianyi [1 ,2 ,3 ,4 ,5 ]
Zhang, Fan [1 ,2 ,3 ,4 ,5 ]
Li, Qixuan [1 ,2 ,3 ,4 ,5 ]
Jiao, Zhuqing [5 ]
Ni, Xinye [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Med Univ, Changzhou Peoples Hosp 2, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
[2] Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
[3] Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
[4] Key Lab Med Phys Changzhou, Changzhou, Peoples R China
[5] Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R China
关键词
deep learning; artificial intelligence; cancer prognosis prediction; cancer prognostic model;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Systemic Therapy for Locally Advanced and Metastatic Non-Small Cell Lung Cancer A Review [J].
Arbour, Kathryn C. ;
Riely, Gregory J. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (08) :764-774
[2]   Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets [J].
Best, Myron G. ;
Sol, Nik ;
't Veld, Sjors G. J. G. In ;
Vancura, Adrienne ;
Muller, Mirte ;
Niemeijer, Anna-Larissa N. ;
Fejes, Aniko V. ;
Fat, Lee-Ann Tjon Kon ;
't Veld, Anna E. Huis In ;
Leurs, Cyra ;
Le Large, Tessa Y. ;
Meijer, Laura L. ;
Kooi, Irsan E. ;
Rustenburg, Francois ;
Schellen, Pepijn ;
Verschueren, Heleen ;
Post, Edward ;
Wedekind, Laurine E. ;
Bracht, Jillian ;
Esenkbrink, Michelle ;
Wils, Leon ;
Favaro, Francesca ;
Schoonhoven, Jilian D. ;
Tannous, Jihane ;
Meijers-Heijboer, Hanne ;
Kazemier, Geert ;
Giovannetti, Elisa ;
Reijneveld, Jaap C. ;
Idema, Sander ;
Killestein, Joep ;
Heger, Michal ;
de Jager, Saskia C. ;
Urbanus, Rolf T. ;
Hoefer, Imo E. ;
Pasterkamp, Gerard ;
Mannhalter, Christine ;
Gomez-Arroyo, Jose ;
Bogaard, Harm-Jan ;
Noske, David P. ;
Vandertop, W. Peter ;
van den Broek, Daan ;
Ylstra, Bauke ;
Nilsson, R. Jonas A. ;
Wesseling, Pieter ;
Karachaliou, Niki ;
Rosell, Rafael ;
Lee-Lewandrowski, Elizabeth ;
Lewandrowski, Kent B. ;
Tannous, Bakhos A. ;
de Langen, Adrianus J. .
CANCER CELL, 2017, 32 (02) :238-+
[3]   Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC) [J].
Bodor, J. Nicholas ;
Boumber, Yanis ;
Borghaei, Hossein .
CANCER, 2020, 126 (02) :260-270
[4]   Association Between Immune-Related Adverse Events During Anti-PD-1 Therapy and Tumor Mutational Burden [J].
Bomze, David ;
Ali, Omar Hasan ;
Bate, Andrew ;
Flatz, Lukas .
JAMA ONCOLOGY, 2019, 5 (11) :1633-1635
[5]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1038/bjc.2014.639]
[6]   Radiotherapy: An immune response modifier for immuno-oncology [J].
De Martino, Mara ;
Daviaud, Camille ;
Vanpouille-Box, Claire .
SEMINARS IN IMMUNOLOGY, 2021, 52
[7]   Original Research Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: An overlooked aspect in immunotherapy [J].
Ghisoni, E. ;
Wicky, A. ;
Bouchaab, H. ;
Imbimbo, M. ;
Delyon, J. ;
Moura, B. Gautron ;
Gerard, C. L. ;
Latifyan, S. ;
Ozdemir, B. C. ;
Caikovski, M. ;
Pradervand, S. ;
Tavazzi, E. ;
Gatta, R. ;
Marandino, L. ;
Valabrega, G. ;
Aglietta, M. ;
Obeid, M. ;
Homicsko, K. ;
Alfonso, N. N. Mederos ;
Zimmermann, S. ;
Coukos, G. ;
Peters, S. ;
Cuendet, M. A. ;
Di Maio, M. ;
Michielin, O. .
EUROPEAN JOURNAL OF CANCER, 2021, 149 :153-164
[8]   Association Between Immune-related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Non-small-cell Lung Cancer [J].
Grangeon, Mathieu ;
Tomasini, Pascale ;
Chaleat, Solene ;
Jeanson, Arnaud ;
Souquet-Bressand, Maxime ;
Khobta, Nataliya ;
Bermudez, Julien ;
Trigui, Youssef ;
Greillier, Laurent ;
Blanchon, Marilyne ;
Boucekine, Mohamed ;
Mascaux, Celine ;
Barlesi, Fabrice .
CLINICAL LUNG CANCER, 2019, 20 (03) :201-207
[9]   Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC-Update from PACIFIC [J].
Gray, Jhanelle E. ;
Villegas, Augusto ;
Daniel, Davey ;
Vicente, David ;
Murakami, Shuji ;
Hui, Rina ;
Kurata, Takayasu ;
Chiappori, Alberto ;
Lee, Ki Hyeong ;
Cho, Byoung Chul ;
Planchard, David ;
Paz-Ares, Luis ;
Faivre-Finn, Corinne ;
Vansteenkiste, Johan F. ;
Spigel, David R. ;
Wadsworth, Catherine ;
Taboada, Maria ;
Dennis, Phillip A. ;
Ozguroglu, Mustafa ;
Antonia, Scott J. .
JOURNAL OF THORACIC ONCOLOGY, 2020, 15 (02) :288-293
[10]   Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors [J].
Heinhuis, K. M. ;
Ros, W. ;
Kok, M. ;
Steeghs, N. ;
Beijnen, J. H. ;
Schellens, J. H. M. .
ANNALS OF ONCOLOGY, 2019, 30 (02) :219-235