Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review

被引:24
|
作者
Li, Weifeng [1 ,2 ]
Xue, Yao [1 ,2 ]
Feng, Xinbo [1 ,2 ]
Rao, Shun [1 ,2 ]
Zhang, Tianyao [1 ,2 ]
Gao, Zhenhai [1 ,2 ]
Guo, Yueming [1 ]
Zhou, Haoyu [1 ]
Zhao, Haoyuan [1 ]
Song, Zelai [1 ]
Shi, Jiawei [1 ]
Wang, Hewu [3 ]
Wang, Deping [4 ]
机构
[1] Jilin Univ, Coll Automot Engn, Changchun 130025, Peoples R China
[2] Jilin Univ, Natl Key Lab Automot Chassis Integrat & Bion, Changchun 130025, Peoples R China
[3] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[4] China FAW Corp Ltd, Gen Res & Dev Inst, Changchun 130013, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Thermal runaway; Particles; Safety; INTERNAL SHORT-CIRCUIT; FIRE; MECHANISM; PERFORMANCE; PREVENTION; BEHAVIOR;
D O I
10.1016/j.est.2023.109980
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal runaway (TR) of lithium-ion batteries (LIBs) is hindering the large-scale promotion of new energy vehicles. The process of TR is often accompanied by high-temperature air flow and the eruption of particles. The particle emission was supposed to pose a risk of igniting combustibles in the surrounding environment. Relevant studies have been conducted, but reviews of these studies are lacked. Therefore, we summarize the properties of particles released upon the TR of LIBs, including morphology, mass, size, thermal stability, chemical composition, spread and deposition, temperature, and eruption distance. It was found that most of the particles appear as black, irregular-shaped powders, and their main components are carbon, carbonates, metals, metal oxides and various organic matter. Particle contains >30 elements, of which up to 40 % are metals, and >70 % of metals are polluting to the atmosphere, soil or water. Owing to different particle sizes, particles may eventually be deposited or suspended in the air, harming the environment and human body. Therefore, it is necessary to strengthen the research, supervision and treatment of LIB particle emissions. Specifically, conduct an in-depth study of the temperature and eruption range of sparks, and focus on the analysis of non-metallic elements, and conduct a comprehensive composition analysis and determination, and study the influencing factors of particle size distribution and guide the design of protective masks. Our work may pave the way for providing theoretical guidance for improving the safety of LIBs and establishing effective particle emission management methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Scaling Methodology to Describe the Capacity Dependent Responses During Thermal Runaway of Lithium-Ion Batteries
    Doose, Stefan
    Hahn, Alexander
    Bredekamp, Michael
    Haselrieder, Wolfgang
    Kwade, Arno
    BATTERIES & SUPERCAPS, 2022, 5 (07)
  • [22] Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions
    Zhao Lei
    Zhu Maotao
    Xu Xiaoming
    Gao Junkui
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [23] Advances and challenges in thermal runaway modeling of lithium-ion batteries
    Wang, Gongquan
    Ping, Ping
    Kong, Depeng
    Peng, Rongqi
    He, Xu
    Zhang, Yue
    Dai, Xinyi
    Wen, Jennifer
    INNOVATION, 2024, 5 (04):
  • [24] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100
  • [25] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [26] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [27] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [28] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [29] Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries
    Zheng, Yi
    Chen, Shuo
    Peng, Shengtao
    Feng, Xi
    Wang, Chun
    Zhang, Guangwen
    Zhao, Xiangdi
    FIRE TECHNOLOGY, 2025,
  • [30] Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions
    Chen, Wei
    Jiang, Juncheng
    Wen, Jinfeng
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 146 (02) : 855 - 863