In Situ Electrochemical Restructuring B-Doped Metal-Organic Frameworks as Efficient OER Electrocatalysts for Stable Anion Exchange Membrane Water Electrolysis

被引:26
作者
Lin, Xuanni [1 ]
Li, Xue [1 ]
Shi, Lei [2 ]
Ye, Fenghui [1 ]
Liu, Feng [3 ]
Liu, Dong [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing, Peoples R China
[3] Suzhou Univ Sci & Technol, Inst Mat Sci & Devices, Sch Mat Sci & Engn, Suzhou 215009, Peoples R China
关键词
boron doping; in situ reconstruction; metal-organic frameworks; oxygen evolution reaction; water electrolysis;
D O I
10.1002/smll.202308517
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal organic frameworks (MOFs) are promising as effective electrocatalysts toward oxygen evolution reaction (OER). However, the origin of OER activity for MOF-based electrocatalysts is still unclear because of their structure reconstruction during electrocatalysis process. Here, a novel MOF (B-MOF-Zn-Co) with spherical superstructure is developed by hydrothermal treatment of zeolitic imidazolate framework-Zn, Co (ZIF-Zn-Co) using boric acid. The resultant B-MOF-Zn-Co shows high OER activity with a low overpotential of 362 mV at 100 mA cm-2. Remarkably, B-MOF-Zn-Co displays excellent stability with only 3.6% voltage delay over 300 h at 100 mA cm-2 in alkaline electrolyte. Surprisingly, B-MOF-Zn-Co thoroughly transforms into B-doped CoOOH (B-CoOOH) during electrolysis process, which is served as actual active material for high OER electrocatalytic performance. The newly-formed B-CoOOH possesses lower energy barrier of potential-determining step (PDS) for OOH* formation compared with CoOOH, benefiting for high OER activity. More importantly, B-MOF-Zn-Co based anion exchange membrane water electrolytic cell (AEMWE) demonstrates continuously durable operation with stable current density of 200 mA cm-2 over 300 h, illustrating its potential application in practice water electrolysis. This work offers an in situ electrochemical reconstruction strategy for the development of stable and effective OER electrocatalysts toward practice AEMWE. A novel B-doped MOF (B-MOF-Zn-Co) exhibits high activity and outstanding stability toward oxygen evolution reaction (OER). Surprisingly, during electrolysis process, B-MOF-Zn-Co thoroughly transforms into B-CoOOH, which serves as actual active material for high OER activity. The enhanced OER activity is originated from the optimized adsorption-desorption of oxygen intermediates via regulating the d-orbital electronic structure of Co center by B doping.image
引用
收藏
页数:11
相关论文
共 58 条
[1]   One-Step Approach for Constructing High-Density Single-Atom Catalysts toward Overall Water Splitting at Industrial Current Densities [J].
Cao, Dong ;
Zhang, Zhirong ;
Cui, Yahui ;
Zhang, Runhao ;
Zhang, Lipeng ;
Zeng, Jie ;
Cheng, Daojian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
[2]   Spherical Superstructure of Boron Nitride Nanosheets Derived from Boron-Containing Metal-Organic Frameworks [J].
Cao, Lei ;
Dai, Pengcheng ;
Tang, Jing ;
Li, Dong ;
Chen, Ruihua ;
Liu, Dandan ;
Gu, Xin ;
Li, Liangjun ;
Bando, Yoshio ;
Ok, Yong Sik ;
Zhao, Xuebo ;
Yamauchi, Yusuke .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (19) :8755-8762
[3]   Dynamic Migration of Surface Fluorine Anions on Cobalt-Based Materials to Achieve Enhanced Oxygen Evolution Catalysis [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Wang, Sibo ;
Zhang, Nan ;
Tong, Yun ;
Ju, Huanxin ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (47) :15471-15475
[4]   Syntheses and crystal structures of two new hydrated borates, Zn8[(BO3)3O2(OH)3] and Pb[B5O8(OH)]•1.5H2O [J].
Chen, Xuean ;
Zhao, Yinghua ;
Chang, Xinan ;
Zuo, Jianlong ;
Zang, Hegui ;
Xiao, Weiqiang .
JOURNAL OF SOLID STATE CHEMISTRY, 2006, 179 (12) :3911-3918
[5]   Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production [J].
Cheng, Fanpeng ;
Peng, Xianyun ;
Hu, Lingzi ;
Yang, Bin ;
Li, Zhongjian ;
Dong, Chung-Li ;
Chen, Jeng-Lung ;
Hsu, Liang-Ching ;
Lei, Lecheng ;
Zheng, Qiang ;
Qiu, Ming ;
Dai, Liming ;
Hou, Yang .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[7]   Nano-geometric deformation and synergistic Co nanoparticles-Co-N4 composite sites for proton exchange membrane fuel cells [J].
Cheng, Xiaoyang ;
Yang, Jian ;
Yan, Wei ;
Han, Yu ;
Qu, Ximing ;
Yin, Shuhu ;
Chen, Chi ;
Ji, Ruiyi ;
Li, Yanrong ;
Li, Guang ;
Li, Gen ;
Jiang, Yanxia ;
Sun, Shigang .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (11) :5958-5967
[8]   Metal-Organic Frameworks as Platforms for Functional Materials [J].
Cui, Yuanjing ;
Li, Bin ;
He, Huajun ;
Zhou, Wei ;
Chen, Banglin ;
Qian, Guodong .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (03) :483-493
[9]   In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution [J].
Dionigi, Fabio ;
Zeng, Zhenhua ;
Sinev, Ilya ;
Merzdorf, Thomas ;
Deshpande, Siddharth ;
Lopez, Miguel Bernal ;
Kunze, Sebastian ;
Zegkinoglou, Ioannis ;
Sarodnik, Hannes ;
Fan, Dingxin ;
Bergmann, Arno ;
Drnec, Jakub ;
de Araujo, Jorge Ferreira ;
Gliech, Manuel ;
Teschner, Detre ;
Zhu, Jing ;
Li, Wei-Xue ;
Greeley, Jeffrey ;
Roldan Cuenya, Beatriz ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+