Identification of Differentiation-Related Biomarkers in Liposarcoma Tissues Using Weighted Gene Co-Expression Network Analysis

被引:0
|
作者
Zhao, Huanhuan [1 ]
Zhang, Guochuan [1 ]
机构
[1] Hebei Med Univ, Hosp 3, Dept Orthoped Oncol, Shijiazhuang 050051, Hebei, Peoples R China
关键词
WGCNA; LASSO analysis; liposarcoma; differentiation-related biomarker; differential diagnosis; CANCER;
D O I
10.23812/j.biol.regul.homeost.agents.20233712.644
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: A thorough diagnosis of liposarcoma is essential to develop an optimal therapy. This study aimed to identify differentiation-related biomarkers in liposarcoma. Methods: Expression profiling data were downloaded from the Gene Expression Omnibus (GEO) database. Modules correlated with dedifferentiated liposarcoma were identified using weighted gene co-expression network analysis (WGCNA). Differentiallyexpressed genes were identified utilizing the limma R package. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted with the clusterProfiler R package. Hub genes were identified by least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis was performed using survival and survminer R packages. Results: The brown module was the most positively correlated module with dedifferentiated liposarcoma, while the turquoise module exhibited the strongest negative correlation with dedifferentiated liposarcoma. Forty-nine upregulated common genes were found by intersecting the upregulated differentially-expressed genes with the co-expressed genes in the brown module, and 177 downregulated common genes were found by intersecting the downregulated differentially-expressed genes with the coexpressed genes in the turquoise module. GO and KEGG analyses revealed that upregulated common genes were abundant in cell division and tumor-related pathways, while downregulated common genes were involved in cellular metabolism and metabolismrelated pathways. ADIPOQ, i7BE2C, and PRC1 were screened out as biomarkers which might distinguish dedifferentiated and well-differentiated liposarcoma. Dedifferentiated liposarcoma patients with low ADIPOQ levels displayed a significantly shorter distant recurrence-free survival than those with high ADIPOQ levels. Conclusion: ADIPOQ, i7BE2C, and PRC1 are potential differentiation-related biomarkers in liposarcoma tissues. ADIPOQ has the potential to be a novel prognostic biomarker for patients with dedifferentiated liposarcoma.
引用
收藏
页码:6807 / 6819
页数:13
相关论文
共 50 条
  • [41] LncRNA weighted gene co-expression network analysis reveals novel biomarkers related to prostate cancer metastasis
    Miao Liu
    Man-Yun Chen
    Jia-Meng Huang
    Qian Liu
    Lin Wang
    Rong Liu
    Nian Yang
    Wei-Hua Huang
    Wei Zhang
    BMC Medical Genomics, 15
  • [42] LncRNA weighted gene co-expression network analysis reveals novel biomarkers related to prostate cancer metastasis
    Liu, Miao
    Chen, Man-Yun
    Huang, Jia-Meng
    Liu, Qian
    Wang, Lin
    Liu, Rong
    Yang, Nian
    Huang, Wei-Hua
    Zhang, Wei
    BMC MEDICAL GENOMICS, 2022, 15 (01)
  • [43] Weighted Gene Co-expression Network Analysis of the Inflammatory Wnt Signaling Reveals Biomarkers Related to Bone Formation
    Yadalam, Pradeep Kumar
    Ramadoss, Ramya
    Suresh, Ramya
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (06)
  • [44] Identification of Biomarkers Related to Immune Cell Infiltration in Hepatocellular Carcinoma Using Gene Co-Expression Network
    Zhou, Wanbang
    Chen, Yiyang
    Luo, Ruixing
    Li, Zifan
    Jiang, Guanwei
    Ou, Xi
    PATHOLOGY & ONCOLOGY RESEARCH, 2021, 27
  • [45] Comprehensive analysis of biomarkers for prostate cancer based on weighted gene co-expression network analysis
    Chen, Xuan
    Wang, Jingyao
    Peng, Xiqi
    Liu, Kaihao
    Zhang, Chunduo
    Zeng, Xingzhen
    Lai, Yongqing
    MEDICINE, 2020, 99 (14)
  • [46] Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis
    Pengfei Xu
    Jian Yang
    Junhui Liu
    Xue Yang
    Jianming Liao
    Fanen Yuan
    Yang Xu
    Baohui Liu
    Qianxue Chen
    BMC Medical Genomics, 11
  • [47] Identification of key module and hub genes in pulpitis using weighted gene co-expression network analysis
    Zhang, Denghui
    Zheng, Chen
    Zhu, Tianer
    Yang, Fan
    Zhou, Yiqun
    BMC ORAL HEALTH, 2023, 23 (01)
  • [48] Identification of key module and hub genes in pulpitis using weighted gene co-expression network analysis
    Denghui Zhang
    Chen Zheng
    Tianer Zhu
    Fan Yang
    Yiqun Zhou
    BMC Oral Health, 23
  • [49] Construction of Gene Modules and Analysis of Prognostic Biomarkers for Cervical Cancer by Weighted Gene Co-Expression Network Analysis
    Liu, Jiamei
    Liu, Shengye
    Yang, Xianghong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [50] Identification of Hub Genes as Biomarkers Correlated with the Proliferation and Prognosis in Lung Cancer: A Weighted Gene Co-Expression Network Analysis
    Xu, Xuting
    Xu, Limin
    Huang, Huilian
    Li, Jing
    Dong, Shunli
    Jin, Lili
    Ma, Zhihong
    Li, Liqin
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020