Identification of Differentiation-Related Biomarkers in Liposarcoma Tissues Using Weighted Gene Co-Expression Network Analysis

被引:0
作者
Zhao, Huanhuan [1 ]
Zhang, Guochuan [1 ]
机构
[1] Hebei Med Univ, Hosp 3, Dept Orthoped Oncol, Shijiazhuang 050051, Hebei, Peoples R China
关键词
WGCNA; LASSO analysis; liposarcoma; differentiation-related biomarker; differential diagnosis; CANCER;
D O I
10.23812/j.biol.regul.homeost.agents.20233712.644
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: A thorough diagnosis of liposarcoma is essential to develop an optimal therapy. This study aimed to identify differentiation-related biomarkers in liposarcoma. Methods: Expression profiling data were downloaded from the Gene Expression Omnibus (GEO) database. Modules correlated with dedifferentiated liposarcoma were identified using weighted gene co-expression network analysis (WGCNA). Differentiallyexpressed genes were identified utilizing the limma R package. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted with the clusterProfiler R package. Hub genes were identified by least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis was performed using survival and survminer R packages. Results: The brown module was the most positively correlated module with dedifferentiated liposarcoma, while the turquoise module exhibited the strongest negative correlation with dedifferentiated liposarcoma. Forty-nine upregulated common genes were found by intersecting the upregulated differentially-expressed genes with the co-expressed genes in the brown module, and 177 downregulated common genes were found by intersecting the downregulated differentially-expressed genes with the coexpressed genes in the turquoise module. GO and KEGG analyses revealed that upregulated common genes were abundant in cell division and tumor-related pathways, while downregulated common genes were involved in cellular metabolism and metabolismrelated pathways. ADIPOQ, i7BE2C, and PRC1 were screened out as biomarkers which might distinguish dedifferentiated and well-differentiated liposarcoma. Dedifferentiated liposarcoma patients with low ADIPOQ levels displayed a significantly shorter distant recurrence-free survival than those with high ADIPOQ levels. Conclusion: ADIPOQ, i7BE2C, and PRC1 are potential differentiation-related biomarkers in liposarcoma tissues. ADIPOQ has the potential to be a novel prognostic biomarker for patients with dedifferentiated liposarcoma.
引用
收藏
页码:6807 / 6819
页数:13
相关论文
共 50 条
  • [21] Identification of key genes in colorectal cancer diagnosis by co-expression analysis weighted gene co-expression network analysis
    Mortezapour, Mahdie
    Tapak, Leili
    Bahreini, Fatemeh
    Najafi, Rezvan
    Afshar, Saeid
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 157
  • [22] Identification of WTAP-related genes by weighted gene co-expression network analysis in ovarian cancer
    Wang, Jing
    Xu, Jing
    Li, Ke
    Huang, Yunke
    Dai, Yilin
    Xu, Congjian
    Kang, Yu
    JOURNAL OF OVARIAN RESEARCH, 2020, 13 (01)
  • [23] Identification of Important Modules and Biomarkers That Are Related to Immune Infiltration Cells in Severe Burns Based on Weighted Gene Co-Expression Network Analysis
    Zhang, Zexin
    He, Yan
    Lin, Rongjie
    Lan, Junhong
    Fan, Yueying
    Wang, Peng
    Jia, Chiyu
    FRONTIERS IN GENETICS, 2022, 13
  • [24] Identification of biomarkers for early diagnosis of multiple myeloma by weighted gene co-expression network analysis and their clinical relevance
    Xu, Mengling
    Meng, Ye
    Li, Qian
    Charwudzi, Alice
    Qin, Hui
    Xiong, Shudao
    HEMATOLOGY, 2022, 27 (01) : 322 - 331
  • [25] Identification of WTAP-related genes by weighted gene co-expression network analysis in ovarian cancer
    Jing Wang
    Jing Xu
    Ke Li
    Yunke Huang
    Yilin Dai
    Congjian Xu
    Yu Kang
    Journal of Ovarian Research, 13
  • [26] Identification of hub genes related to Duchenne muscular dystrophy by weighted gene co-expression network analysis
    Wei, Yanning
    Su, Qisheng
    Li, Xiaohong
    MEDICINE, 2022, 101 (52)
  • [27] Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis
    Li, Boxuan
    Pu, Ke
    Wu, Xinan
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (07) : 11418 - 11431
  • [28] LncRNA weighted gene co-expression network analysis reveals novel biomarkers related to prostate cancer metastasis
    Miao Liu
    Man-Yun Chen
    Jia-Meng Huang
    Qian Liu
    Lin Wang
    Rong Liu
    Nian Yang
    Wei-Hua Huang
    Wei Zhang
    BMC Medical Genomics, 15
  • [29] LncRNA weighted gene co-expression network analysis reveals novel biomarkers related to prostate cancer metastasis
    Liu, Miao
    Chen, Man-Yun
    Huang, Jia-Meng
    Liu, Qian
    Wang, Lin
    Liu, Rong
    Yang, Nian
    Huang, Wei-Hua
    Zhang, Wei
    BMC MEDICAL GENOMICS, 2022, 15 (01)
  • [30] Weighted Gene Co-expression Network Analysis of the Inflammatory Wnt Signaling Reveals Biomarkers Related to Bone Formation
    Yadalam, Pradeep Kumar
    Ramadoss, Ramya
    Suresh, Ramya
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (06)