Attention-based multi-scale recursive residual network for low-light image enhancement

被引:1
作者
Wang, Kaidi [1 ]
Zheng, Yuanlin [1 ]
Liao, Kaiyang [1 ]
Liu, Haiwen [1 ]
Sun, Bangyong [1 ]
机构
[1] Xian Univ Technol, Coll Fac Printing, Packaging Engn & Digital Media Technol, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Recursive residual network; Multi-scale; Attention; Feature fusion;
D O I
10.1007/s11760-023-02927-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the problems of color distortion, low image processing efficiency, rich context information, spatial information imbalance in the current low-light image enhancement algorithm based on a convolutional neural network. In this paper, an Attention-based multi-scale recursive residual network for low-light image enhancement (AMR-Net) is proposed based on high-resolution, single-scale image processing. First, shallow features are extracted using convolution and channel attention. In the recursive residual unit, a parallel multi-scale residual block is constructed, and the image features are extracted from the three scales: original image resolution, 1/2 resolution, and 1/4 resolution. Then, the deep features and shallow features are connected by selective kernel feature fusion to obtain rich context information and spatial information. Finally, the residual image is obtained by convolution processing of the deep features, and the enhanced image is obtained by adding the original image to the residual image. The experimental results on LOL, LIME, DICM, MEF datasets show that the proposed method has achieved good results in multiple indicators, and reasonably restored the brightness, contrast, and details of the image, thereby intuitively improving the perceived quality of the image.
引用
收藏
页码:2521 / 2531
页数:11
相关论文
共 50 条
  • [41] Multi-scale residual attention network for single image dehazing
    Sheng, Jiechao
    Lv, Guoqiang
    Du, Gang
    Wang, Zi
    Feng, Qibin
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [42] MMFF-NET: Multi-layer and multi-scale feature fusion network for low-light infrared image enhancement
    Ge Zhu
    Yuhan Chen
    Xianquan Wang
    Yiheng Zhang
    Signal, Image and Video Processing, 2024, 18 : 1089 - 1097
  • [43] MMFF-NET: Multi-layer and multi-scale feature fusion network for low-light infrared image enhancement
    Zhu, Ge
    Chen, Yuhan
    Wang, Xianquan
    Zhang, Yiheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1089 - 1097
  • [44] Brightness Perceiving for Recursive Low-Light Image Enhancement
    Wang H.
    Peng L.
    Sun Y.
    Wan Z.
    Wang Y.
    Cao Y.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 3034 - 3045
  • [45] Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism
    Ma S.
    Pan W.
    Li N.
    Du S.
    Liu H.
    Xu B.
    Xu C.
    Li X.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (01) : 489 - 497
  • [46] FBGAN: multi-scale feature aggregation combined with boosting strategy for low-light image enhancement
    Jiang, Bin
    Wang, Renjun
    Dai, Jiawu
    Li, Qiao
    Zeng, Weiyuan
    VISUAL COMPUTER, 2024, 40 (03) : 1745 - 1756
  • [47] FBGAN: multi-scale feature aggregation combined with boosting strategy for low-light image enhancement
    Bin Jiang
    Renjun Wang
    Jiawu Dai
    Qiao Li
    Weiyuan Zeng
    The Visual Computer, 2024, 40 : 1745 - 1756
  • [48] Hyperspectral Image Classification Based on Multi-Scale Residual Network with Attention Mechanism
    Qing, Yuhao
    Liu, Wenyi
    REMOTE SENSING, 2021, 13 (03) : 1 - 18
  • [49] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695
  • [50] Low-Light Image Enhancement Based on Multi-Branch All Convolutional Neural Network
    Wu Ruoyou
    Wang Dexing
    Yuan Hongchun
    Peng, Gong
    Chen Guanqi
    Dan, Wang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)