Attention-based multi-scale recursive residual network for low-light image enhancement

被引:1
|
作者
Wang, Kaidi [1 ]
Zheng, Yuanlin [1 ]
Liao, Kaiyang [1 ]
Liu, Haiwen [1 ]
Sun, Bangyong [1 ]
机构
[1] Xian Univ Technol, Coll Fac Printing, Packaging Engn & Digital Media Technol, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Recursive residual network; Multi-scale; Attention; Feature fusion;
D O I
10.1007/s11760-023-02927-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming at the problems of color distortion, low image processing efficiency, rich context information, spatial information imbalance in the current low-light image enhancement algorithm based on a convolutional neural network. In this paper, an Attention-based multi-scale recursive residual network for low-light image enhancement (AMR-Net) is proposed based on high-resolution, single-scale image processing. First, shallow features are extracted using convolution and channel attention. In the recursive residual unit, a parallel multi-scale residual block is constructed, and the image features are extracted from the three scales: original image resolution, 1/2 resolution, and 1/4 resolution. Then, the deep features and shallow features are connected by selective kernel feature fusion to obtain rich context information and spatial information. Finally, the residual image is obtained by convolution processing of the deep features, and the enhanced image is obtained by adding the original image to the residual image. The experimental results on LOL, LIME, DICM, MEF datasets show that the proposed method has achieved good results in multiple indicators, and reasonably restored the brightness, contrast, and details of the image, thereby intuitively improving the perceived quality of the image.
引用
收藏
页码:2521 / 2531
页数:11
相关论文
共 50 条
  • [1] Attention-based multi-scale recursive residual network for low-light image enhancement
    Kaidi Wang
    Yuanlin Zheng
    Kaiyang Liao
    Haiwen Liu
    Bangyong Sun
    Signal, Image and Video Processing, 2024, 18 : 2521 - 2531
  • [2] ATTENTION-BASED NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT
    Zhang, Cheng
    Yan, Qingsen
    Zhu, Yu
    Li, Xianjun
    Sun, Jinqiu
    Zhang, Yanning
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [3] Low-Light Image Enhancement Network Based on Multi-Scale Residual Feature Integration
    Huang, Shuying
    Liu, Hebin
    Yang, Yong
    Wan, Weiguo
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [4] Learning Multi-scale Retinex with Residual Network for Low-Light Image Enhancement
    Ma, Long
    Lin, Jie
    Shang, Jingjie
    Zhong, Wei
    Fan, Xin
    Luo, Zhongxuan
    Liu, Risheng
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 291 - 302
  • [5] MARN: Multi-Scale Attention Retinex Network for Low-Light Image Enhancement
    Zhang, Xin
    Wang, Xia
    IEEE ACCESS, 2021, 9 : 50939 - 50948
  • [6] WMANet: Wavelet-Based Multi-Scale Attention Network for Low-Light Image Enhancement
    Xiang, Yangjun
    Hu, Gengsheng
    Chen, Mei
    Emam, Mahmoud
    IEEE ACCESS, 2024, 12 : 105674 - 105685
  • [7] Low-Light Image Enhancement Network Based on Multi-Scale Feature Complementation
    Yang, Yong
    Xu, Wenzhi
    Huang, Shuying
    Wan, Weiguo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3214 - 3221
  • [8] FMR-Net: a fast multi-scale residual network for low-light image enhancement
    Yuhan Chen
    Ge Zhu
    Xianquan Wang
    Yuhuai Shen
    Multimedia Systems, 2024, 30
  • [9] FMR-Net: a fast multi-scale residual network for low-light image enhancement
    Chen, Yuhan
    Zhu, Ge
    Wang, Xianquan
    Shen, Yuhuai
    MULTIMEDIA SYSTEMS, 2024, 30 (02)
  • [10] Attention-Guided Multi-Scale Feature Fusion Network for Low-Light Image Enhancement
    Cui, HengShuai
    Li, Jinjiang
    Hua, Zhen
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16