Predicting amyotrophic lateral sclerosis (ALS) progression with machine learning

被引:2
|
作者
Jabbar, Muzammil Arif Din Abdul [1 ,2 ]
Guo, Ling [3 ]
Nag, Sonakshi [3 ]
Guo, Yang [3 ]
Simmons, Zachary [4 ]
Pioro, Erik P. [5 ]
Ramasamy, Savitha [3 ,12 ]
Yeo, Crystal Jing Jing [2 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge, England
[2] ASTAR, Singapore, Singapore
[3] ASTAR, Inst Infocomm Res I2R, Singapore, Singapore
[4] Penn State Univ, Dept Neurol, Coll Med, State Coll, PA USA
[5] Northwestern Univ, Feinberg Sch Med, Dept Neurol, Chicago, IL USA
[6] Imperial Coll London, Lee Kong Chien Sch Med, Singapore, Singapore
[7] Nanyang Technol Univ Singapore, Singapore, Singapore
[8] Univ Aberdeen, Sch Med Med Sci & Nutr, Aberdeen, Scotland
[9] Natl Neurosci Inst, Singapore, Singapore
[10] Duke NUS Med Sch, Singapore, Singapore
[11] 61 Biopolis Dr, Singapore 138673, Singapore
[12] 1 Fusionopolis Way,21-01 Connexis, Singapore 138632, Singapore
关键词
ALS; motor neurone disease; machine learning; DISEASE PROGRESSION; DOUBLE-BLIND; VITAL CAPACITY; TRIAL; EFFICACY; SAFETY; PROGNOSIS; EDARAVONE; SURVIVAL; DESIGN;
D O I
10.1080/21678421.2023.2285443
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
ObjectiveTo predict ALS progression with varying observation and prediction window lengths, using machine learning (ML).MethodsWe used demographic, clinical, and laboratory parameters from 5030 patients in the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database to model ALS disease progression as fast (at least 1.5 points decline in ALS Functional Rating Scale-Revised (ALSFRS-R) per month) or non-fast, using Extreme Gradient Boosting (XGBoost) and Bayesian Long Short Term Memory (BLSTM). XGBoost identified predictors of progression while BLSTM provided a confidence level for each prediction.ResultsML models achieved area under receiver-operating-characteristics curve (AUROC) of 0.570-0.748 and were non-inferior to clinician assessments. Performance was similar with observation lengths of a single visit, 3, 6, or 12 months and on a holdout validation dataset, but was better for longer prediction lengths. 21 important predictors were identified, with the top 3 being days since disease onset, past ALSFRS-R and forced vital capacity. Nonstandard predictors included phosphorus, chloride and albumin. BLSTM demonstrated higher performance for the samples about which it was most confident. Patient screening by models may reduce hypothetical Phase II/III clinical trial sizes by 18.3%.ConclusionSimilar accuracies across ML models using different observation lengths suggest that a clinical trial observation period could be shortened to a single visit and clinical trial sizes reduced. Confidence levels provided by BLSTM gave additional information on the trustworthiness of predictions, which could aid decision-making. The identified predictors of ALS progression are potential biomarkers and therapeutic targets for further research.
引用
收藏
页码:242 / 255
页数:14
相关论文
共 50 条
  • [31] Evaluating emerging drugs in phase II & III for the treatment of amyotrophic lateral sclerosis
    Li, Xiaoyan
    Bedlack, Richard
    EXPERT OPINION ON EMERGING DRUGS, 2024, 29 (02) : 93 - 102
  • [32] Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development
    Behler, Anna
    Mueller, Hans-Peter
    Ludolph, Albert C. C.
    Kassubek, Jan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [33] Noninvasive Ventilation in Amyotrophic Lateral Sclerosis
    Cooksey, Jessica A.
    Sergew, Amen
    SLEEP MEDICINE CLINICS, 2020, 15 (04) : 527 - +
  • [34] Edaravone in the treatment of amyotrophic lateral sclerosis
    Kuzma-Kozakiewicz, Magdalena
    NEUROLOGIA I NEUROCHIRURGIA POLSKA, 2018, 52 (02) : 124 - 128
  • [35] Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
    Placek, Katerina
    Benatar, Michael
    Wuu, Joanne
    Rampersaud, Evadnie
    Hennessy, Laura
    Van Deerlin, Vivianna M.
    Grossman, Murray
    Irwin, David J.
    Elman, Lauren
    McCluskey, Leo
    Quinn, Colin
    Granit, Volkan
    Statland, Jeffrey M.
    Burns, Ted M.
    Ravits, John
    Swenson, Andrea
    Katz, Jon
    Pioro, Erik P.
    Jackson, Carlayne
    Caress, James
    So, Yuen
    Maiser, Samuel
    Walk, David
    Lee, Edward B.
    Trojanowski, John Q.
    Cook, Philip
    Gee, James
    Sha, Jin
    Naj, Adam C.
    Rademakers, Rosa
    Chen, Wenan
    Wu, Gang
    Paul Taylor, J.
    McMillan, Corey T.
    EMBO MOLECULAR MEDICINE, 2021, 13 (01)
  • [36] Exploiting speech tremors: machine learning for early diagnosis of amyotrophic lateral sclerosis
    Chauhan, Ritu
    Sharma, Urvashi
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [37] Clinical studies in amyotrophic lateral sclerosis
    Dorst, Johannes
    Genge, Angela
    CURRENT OPINION IN NEUROLOGY, 2022, 35 (05) : 686 - 692
  • [38] MN-166 (ibudilast) in amyotrophic lateral sclerosis in a Phase IIb/III study: COMBAT-ALS study design
    Oskarsson, Bjorn
    Maragakis, Nicholas
    Bedlack, Richard S.
    Goyal, Namita
    Meyer, Jenny A.
    Genge, Angela
    Bodkin, Cynthia
    Maiser, Samuel
    Staff, Nathan
    Zinman, Lorne
    Olney, Nicholas
    Turnbull, John
    Brooks, Benjamin Rix
    Klonowski, Emelia
    Makhay, Malath
    Yasui, Seiichi
    Matsuda, Kazuko
    NEURODEGENERATIVE DISEASE MANAGEMENT, 2021, 11 (06) : 431 - 443
  • [39] Amyotrophic lateral sclerosis progression: Iran-ALS clinical registry, a multicentre study
    Shamshiri, Hosein
    Fatehi, Farzad
    Davoudi, Farnoush
    Mir, Elham
    Pourmirza, Behin
    Abolfazli, Roya
    Etemadifar, Masoud
    Harirchian, Mohammad Hossein
    Gharagozli, Koroush
    Ayromlou, Hormoz
    Basiri, Keivan
    Zamani, Babak
    Rohani, Mohammad
    Sedighi, Behnaz
    Roudbari, Ali
    Kasmaei, Hossein Delavar
    Nikkhah, Karim
    Naeini, Alireza Ranjbar
    Nafissi, Shahriar
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2015, 16 (7-8) : 506 - 511
  • [40] Diagnostic delay in amyotrophic lateral sclerosis
    Gwathmey, Kelly G.
    Corcia, Philippe
    McDermott, Chris J.
    Genge, Angela
    Sennfalt, Stefan
    de Carvalho, Mamede
    Ingre, Caroline
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 (09) : 2595 - 2601