A Neural Network Approach to a Grayscale Image-Based Multi-File Type Malware Detection System

被引:2
|
作者
Copiaco, Abigail [1 ]
El Neel, Leena [1 ]
Nazzal, Tasnim [1 ]
Mukhtar, Husameldin [1 ]
Obaid, Walid [1 ]
机构
[1] Univ Dubai, Coll Engn & Informat Technol, Dubai 14143, U Arab Emirates
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 23期
关键词
neural network; transfer learning; malware detection; grayscale; portable executable; PDF; MS Word; artificial intelligence; deep learning; OFFICE DOCUMENTS;
D O I
10.3390/app132312888
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces an innovative all-in-one malware identification model that significantly enhances convenience and resource efficiency in classifying malware across diverse file types. Traditional malware identification methods involve the extraction of static and dynamic features, followed by comparisons with signature-based databases or machine learning-based classifiers. However, many malware detection applications that rely on transfer learning and image transformation suffer from excessive resource consumption. In recent years, transfer learning has emerged as a powerful tool for developing effective classifiers, leveraging pre-trained neural network models. In this research, we comprehensively explore various pre-trained network architectures, including compact and conventional networks, as well as series and directed acyclic graph configurations for malware classification. Our approach utilizes grayscale transform-based features as a standardized set of characteristics, streamlining malware classification across various file types. To ensure the robustness and generalization of our classification models, we integrate multiple datasets into the training process. Remarkably, we achieve an optimal model with 96% accuracy, while maintaining a modest 5 MB size using the SqueezeNet classifier. Overall, our model efficiently classifies malware across file types, reducing the computational load, which can be useful for cybersecurity professionals and organizations.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Towards Multi-view Android Malware Detection Through Image-based Deep Learning
    Geremias, Jhonatan
    Viegas, Eduardo K.
    Santin, Altair O.
    Britto, Alceu
    Horchulhack, Pedro
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 572 - 577
  • [32] MINAD: Multi-inputs Neural Network based on Application Structure for Android Malware Detection
    Nguyen, Duc, V
    Nguyen, Giang L.
    Nguyen, Thang T.
    Ngo, Anh H.
    Pham, Giang T.
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2022, 15 (01) : 163 - 177
  • [33] ReDroidDet: Android Malware Detection Based on Recurrent Neural Network
    Almahmoud, Mothanna
    Alzu'bi, Dalia
    Yaseen, Qussai
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 841 - 846
  • [34] Malware detection approach based on deep convolutional neural networks
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (1-2) : 145 - 157
  • [35] IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture
    Vasan, Danish
    Alazab, Mamoun
    Wassan, Sobia
    Naeem, Hamad
    Safaei, Babak
    Zheng, Qin
    COMPUTER NETWORKS, 2020, 171 (171)
  • [36] Guarding Against the Unknown: Deep Transfer Learning for Hardware Image-Based Malware Detection
    Zhangying He
    Houman Homayoun
    Hossein Sayadi
    Journal of Hardware and Systems Security, 2024, 8 (2) : 61 - 78
  • [37] Adversarial Attacks Against Image-Based Malware Detection Using Autoencoders
    Carey, Alycia N.
    Mai, Huy
    Zhan, Justin
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXII, 2021, 11735
  • [38] A hybrid deep learning image-based analysis for effective malware detection
    Venkatraman, Sitalakshmi
    Alazab, Mamoun
    Vinayakumar, R.
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 47 : 377 - 389
  • [39] Deep Dual-Channel Neural Network for Image-Based Smoke Detection
    Gu, Ke
    Xia, Zhifang
    Qiao, Junfei
    Lin, Weisi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (02) : 311 - 323
  • [40] Robustness of Image-based Android Malware Detection Under Adversarial Attacks
    Darwaish, Asim
    Nait-Abdesselam, Farid
    Titouna, Chafiq
    Sattar, Sumera
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,